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Abstract1

Spelling error correction is the task of identifying and rectifying misspelled words in texts. It is2

a potential and active research topic in Natural Language Processing because of numerous appli-3

cations in human language understanding. The phonetically or visually similar yet semantically4

distinct characters make it an arduous task in any language. Earlier efforts on spelling error correc-5

tion in Bangla and resource-scarce Indic languages focused on rule-based, statistical, and machine6

learning-based methods which we found rather inefficient. In particular, machine learning-based7

approaches, which exhibit superior performance to rule-based and statistical methods, are ineffec-8

tive as they correct each character regardless of its appropriateness. In this work, we propose a9

novel detector-purificator-corrector framework based on denoising transformers by addressing pre-10

vious issues. Moreover, we present a method for large-scale corpus creation from scratch which in11

turn resolves the resource limitation problem of any left-to-right scripted language. The empirical12

outcomes demonstrate the effectiveness of our approach, which outperforms previous state-of-the-13

art methods by attaining an exact match (EM) score of 94.78%, a precision score of 0.9487, a14

recall score of 0.9478, an f1 score of 0.948, an f0.5 score of 0.9483, and a modified accuracy (MA)15

score of 95.16% for Bangla spelling error correction. The models and corpus are publicly available16

at https://tinyurl.com/DPCSpell.17

Keywords: Deep Learning Spell Checker, Spelling Error Correction, Bangla, Transformer18

1 Introduction19

A survey shows that 89.3% of native speakers make spelling errors while writing an essay, whereas it20

increases to 97.7% for non-native speakers [1]. The goal of spelling error rectification is to automatically21

detect and correct spelling mistakes in the text. It is an important task in Natural Language Processing22

(NLP) to improve the performance of numerous downstream activities such as machine translation, text23

generation and summarization, sentiment analysis, and web search engines, to name a few. However,24

spelling errors are usually caused by the wrong placement of phonologically and visually identical25

letters, as well as typing mistakes while writing. Hence, spelling error correction methods necessitate26

a complete grasp of word similarity in terms of phonetic sounds and visual shapes along with typing27

patterns, language reasoning, and modeling, which in turn makes it one of the most challenging tasks28
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in NLP.29

Many approaches have been proposed for spelling error correction (SEC) which are mostly language-30

specific. Furthermore, almost all of these approaches rely on a tiny corpus that is not publicly ac-31

cessible, making reproducibility miserable. Besides, they are restricted to correcting only a few types32

of errors. However, we emphasize Sanskrit-oriented resource-scarce languages such as Bangla, Hindi,33

and Telugu SEC in this work because they share a left-to-right typing script [2]. Most of the SEC34

methods of these languages are either based on heuristic rules [3, 4] or conventional language models35

[5, 6]. Recently, with the emergence of NLP, some methods have been proposed utilizing the Recurrent36

Neural Network (RNN) based sequence-to-sequence approach for SEC of resource-limited languages37

[7]. These methods correct each character of the word regardless of its correctness, which might affect38

the correct characters and lead to a high type-I error rate. Even if they are able to rectify the word,39

doing so would require them to unnecessarily correct letters that are already accurate. When only a40

tiny portion of words are erroneous, which is common in spelling errors, this problem becomes much41

more severe. However, since none of the existing studies utilize transformer-based methods in relation42

to the SEC task of Bangla, Hindi, and Telugu languages, we undertake a comprehensive scrutiny to43

assess and authenticate the untapped capabilities of transformers.44

In this article, we propose a novel denoising transformer-based detector-purificator-corrector frame-45

work for SEC of Bangla and low-resource Indic languages by addressing the above issues and name it46

DPCSpell. Unlike previous methods, it corrects the erroneous characters only. The DPCSpell com-47

prises three networks: a detector, a purificatior, and a corrector. Firstly, the detector module takes the48

erroneous word as input and masks the wrong characters using a transformer-based method. Secondly,49

a similar transformer-based model is employed to further purify the masks of the detector module as50

the correction largely relies on the masked characters. Finally, the original erroneous input and masked51

output from the purificator are fed into the corrector module which synthesizes the correction. The52

whole approach is illustrated in Figure 2. Furthermore, we propose a method for creating a large-scale53

parallel corpus that resolves the resource-limitation issue for SEC of any left-to-right scripted language54

such as Bangla, Hindi, or Telugu. Especially, a large-scale parallel corpus for Bangla SEC is developed55

using our method and made publicly available. Likewise, the Hindi and Telugu corpora are enhanced56

following our method. The empirical outcomes elucidate the efficacy of our method in the SEC and57

the fruitfulness of our corpus creation approach. Additionally, we promote transparency by making58

all our codes publicly available, fostering reproducible baseline of the task.59

The contributions of this article are summarized below:60

• We propose a novel detector-purificator-corrector framework named DPCSpell, which is based61

on denoising transformers, for the SEC of Bangla and resource-scarce Indic languages such as62

Hindi and Telugu.63

• We compare our method with state-of-the-art methods in different languages. It has become the64

new state-of-the-art method for Bangla SEC.65

• A comprehensive comparison among rule-based, RNN-based, convolution-based, and transformer-66

based methods is performed for the SEC task.67

• We introduce a method for developing a large-scale parallel corpus from scratch that overcomes68
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the resource scarcity issue of left-to-right scripted languages. A large-scale parallel corpus for69

Bangla SEC is developed using our method and made publicly available, making Bangla no70

longer a low-resource language for the SEC task.71

The rest of the article is organized as follows: Section 2 contains a thorough literature review of72

Bangla SEC along with Hindi and Telugu. Following that, the explanation of Bangla spelling error73

types and the BanglaSEC corpus creation procedure are provided in Section 3. In section 4, we explain74

the methodology of our proposed DPCSpell. Next, we discuss the empirical outcomes, and compare75

quantitative and qualitative results in Section 5. Moreover, we criticize our method in subsection 5.7.76

Finally, Section 6 concludes our work with future scope.77

2 Literature Review78

A substantial amount of study has been conducted on Bengali spelling detection and correction. The79

Bengali spell checker is yet to depict accurate performance like spell checkers in western languages, i.e.80

English. It is an active research topic in Bangla Natural Language Processing (BNLP) because of the81

diversity of its applications in text generation, text summarization, web search engines, and sentiment82

analysis, to name a few. Bengali spell-checking methods can broadly be classified into three categories83

including rule-based, statistical, and deep-learning-based approach.84

2.1 Rule-Based Methods85

Early efforts in Bengali spell checking mostly focus on generating and employing heuristic rules based86

on morphology, stemming, parts-of-speech, and so on to detect different types of errors. In these87

approaches, error detection and correction take place in two distinct phases. Most of these tactics88

utilize a dictionary lookup table to detect the errors [3, 4, 8, 9, 10, 11, 12, 13], except for a few89

approaches where a string matching algorithm is used [14]. A variety of algorithms including minimum90

edit distance [3, 4, 8, 12], Levenshtein’s edit distance [13], linear search [9], phonetic [11], soundex and91

metaphone [14], and Nerving’s correct spelling suggestion algorithm [10] are employed for correction92

generation. The majority of these methods are only effective in rectifying trivial mistakes.93

A spell checker for transliterated Bangla words has been proposed in [9] using a dictionary lookup94

table, an amalgamation of linear search and Damerau-Levenshtein minimum edit distance, and linear95

search for error detection, correction, and conversion respectively. In 2020, Hasan et al. [10] proposed a96

spell checker by amending peter Nerving’s correct spelling suggestion algorithm. A phonetic encoding97

technique for Bangla considering context-sensitive rules is designed by utilizing edit distance, soundex,98

and metaphone algorithms [11]. Another Bengali spell checker [12] employs a clustering-based approach99

that diminishes both search space and time complexity. Saha et al. [14] brings forward a method100

by incorporating edit distance, soundex, metaphone, and string matching algorithms to identify the101

erroneous Bangla words and deliver the optimal suggestion. Recently, Ahamed et al. [4] proposes a102

strategy that leverages Norvig’s algorithm to detect errors in Bengali words and Jaro-Winkler distance103

to generate suggestions and corrections. Hossain et at. [13] tackles the same problem by utilizing edit104

distance and double methaphone algorithms based on distributed lexicons and numerical suffixes.105
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The rule-based methods are susceptible to handling facile mistakes including typographical [3, 4,106

8, 13, 14], phonetic [8, 12, 13], and cognitive [13, 14] errors with ease. Since they largely rely on107

linguistic knowledge, the complexity of processing intricate errors rises significantly as it requires a lot108

of time and effort to manually construct apt rules. After all, they are bound to a few specific rules for109

rectifying errors. Consequently, they fail to generalize to new test cases.110

2.2 Statistical Methods111

The statistical approach has long been prevalent in Bengali spell-checking studies because of its impres-112

sive performance. Moreover, it does not share the drawbacks of rule-based methods as it avoids sole113

reliance on linguistic knowledge. The spell-checking is carried out based on different characteristics114

of words through employing word count, frequency, n-gram language model, finite state automata,115

and so fourth. Similar to rule-based methods, error identification and rectification happen here in116

two separate phases. However, statistical approaches can further be classified into statistics-based117

[5, 6, 15, 16, 17, 18, 19] and machine-learning-based [20, 21, 22] methods. These spell-checkers are118

proficient in terms of non-word errors but abortive in handling real-word errors.119

A hybrid method by incorporating edit distance with the N-gram language model has been proposed120

for detecting and correcting word-level errors [6, 15]. Furthermore, Mittra et al. [15] utilizes the121

probabilities from the N-gram model to detect sentence-level errors. Gupta et al. [5] and Khan et122

al. [19] use a dictionary and the N-gram model for error identification and rectification, respectively.123

A framework has been developed by [16] employing the N-gram language model to create clusters of124

words. An amalgamation of bi-gram and tri-gram has been examined to detect and correct homophone125

and real-word errors in [17]. Another spell checker [18] uses a corpus and finite state automata to126

detect errors and generate relevant suggestions. Urmi et al. [20] presents an unsupervised method127

to generate a rich Bengali root word dictionary which will essentially aid in the spell-checking task.128

A Bengali morphological parser has been demonstrated in [21] by exploiting the stemming cluster129

approach. Sharif et al. [22] employs logistic regression to classify given Bangla texts into suspicious130

and non-suspicious classes.131

The performance of these methods largely relies on data preprocessing and feature engineering132

which require domain knowledge. Also, they ignore context by not taking word analogies into ac-133

count while constructing numerical representations. Certainly, the spell checker would function more134

effectively if it could determine whether the suggestion is appropriate for the context or not.135

2.3 Deep-Learning-Based Methods136

Although rule-based and statistical approaches perform well, the advent of deep learning has the137

potential to improve performance even further. They rectify errors by considering context which in138

turn makes these methods meaningful. These approaches are especially useful for correcting real-word139

errors where the context of the word in relation to the sentence is required.140

A hybrid approach has been proposed in [23] by integrating a bi-gram language model with Long141

Short-Term Memory (LSTM) network to identify and rectify Bangla real-word errors. Sarker et al.142

[24] mimics a similar methodology for Bangla word completion and sequence prediction. A Gated143
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Recurrent Unit (GRU) based Recurrent Neural Network (RNN) on N-gram dataset is employed by144

[25] to anticipate the next word of a given sequence. Islam et al. [26] presents a sequence-to-sequence145

method for Bangla sentence correction and auto-completion that utilizes LSTM cells in both the146

encoder and decoder networks. Two Convolutional Neural Network (CNN) based sub-models have147

recently been proposed by [2] to handle certain properties of Bengali and Hindi words including high148

inflection, flexible word order, morphological richness, and phonetical spelling errors. Another study [7]149

proposes a sequence-to-sequence approach for Hindi and Telegu spell checking that uses an attention-150

based character-level LSTM network in both the encoder and decoder. Singh et al. [27] mimics an151

analogous approach for developing a Hindi spell checker based on an encoder-decoder network where152

LSTM and CBOW word embedding are utilized.153

While there have been a few attempts to develop spell checkers for resource-scarce Indic languages154

like Hindi and Telegu, which are Sanskrit originated and share a similar structure to Bangla, by155

employing Neural Machine Translation (NMT), to the best of our knowledge, no such work has strived156

yet in relation to the Bengali spell checker. Therefore, in this article, we employ a transformer-based157

sequence-to-sequence network for the first time in relation to the Bengali spell checker to ensure its158

performance.159

2.4 Spell Checkers in Resource Scarce Languages160

A variety of spell-checking approaches have been proposed for different low-resource languages includ-161

ing Bangla [2], Hindi [2, 7, 27, 28], Telugu [7], Punjabi [29], Gujarati [30], Azerbaijani [31], Malayalam162

[32], Urdu [33], Hungarian [34] and Sinhala [32, 35]. An innovative method for automating the cor-163

rection of spelling errors in Hungarian clinical records is introduced in [34], utilizing a word-based164

algorithm and a Statistical Machine Translation (SMT) decoder, even in the absence of an ortho-165

graphically correct proofread corpus from this domain.. A few recent approaches such as [28], [30],166

and [36] propose a rule-based method for Hindi, Gujarati, and Sinhala spelling error correction using167

the viterbi algorithm, edit-distance, and a set of rules respectively. Although, most of the recent168

and state-of-the-art methods of different languages utilize sequence-to-sequence learning by employ-169

ing encoder-decoder architecture [7, 27, 29, 31, 32, 35]. Moreover, these recent approaches seem to170

outperform the rule-based methods by a convincing margin. A sequence-to-sequence character level171

model, where bidirectional LSTM RNN cells are utilized in both encoder and decoder, has been used172

for Hindi spelling error correction [7, 27]. Etoori et al. [7] further devoted the same approach to173

Telugu spelling error rectification. Likewise, [29], [31], [35], and [32] mimic a similar encoder-decoder174

architecture for Punjabi, Azerbaijani, Sinhala, and Malayalam spelling error correction respectively.175

Among these methods, [29], [31], and [32] employ LSTM cells in both the encoder and decoder. Re-176

cently, Sonnadara et al. [35] presented three different neural spell checkers including a character-level177

CNN based, a semi-character RNN based, and a nested RNN based method for Sinhala spelling error178

correction. They achieved the highest performance using the semi-character RNN based method which179

is the current state-of-the-art method among Sinhala spell checkers.180

181

In this article, we propose DPCSpell, a novel transformer-based framework for spelling error cor-182

rection, addressing the limitations of existing methods that indiscriminately correct all characters in183
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a word. Our method selectively corrects only the erroneous portion, leading to improved performance184

and making it state-of-the-art for Bangla spelling error correction. Additionally, we have developed a185

large-scale parallel corpus for the Bangla SEC and made it publicly accessible, overcoming the lack of186

a publicly available corpus. Furthermore, we observed that existing methods tend to rely on private187

corpora and withhold their codes, hindering reproducibility. In the spirit of transparency, we have188

made all our codes publicly accessible, fostering a reproducible baseline for the task.189

3 Corpus Creation190

Our extensive study found that there could be 14 types of spelling errors in Bangla text [5, 13, 23].191

These non-word error types can be classified into five major categories namely phonetic [8, 12, 14, 17],192

visual [13], typographical [5, 26], run-on [13], and split-word errors [23]. The elucidations for all 14193

types of errors are explicated as follows:194

• Phonetic Error: This phenomenon arises when characters or words with analogous articulation195

result in different semantic connotations. Consequently, it can be further classified into cognitive196

and homonym errors, depending on character or word-level factors.197

– Cognitive Error: It is a character-level error caused by the similarity in the pronunciation198

of different letters. There exist several Bangla character clusters, such as ই-ঈ, প-ফ, জ-ঝ-য,199

ন-ণ, স-শ-ষ and so forth, in which each character has a similar sound. Example: পািন → ফািন,200

অসূয়াপূণর্ → অষূয়াপূণর্, পরিনভর্রশীল → ফরিনভর্রশীল, etc.201

– Homonym Error: It is a word-level error in which multiple words have similar sounds but202

different meanings and spellings. However, it is context-dependent as the spelling of the203

erroneous word in a sentence itself could be correct. For example, িশকার−সব্ীকার, কৰ্ীত−কৃত,204

েযাগয্−যজ্ঞ , etc.205

• Visual Error: The similar visual shape of different characters causes visual errors which could206

further be classified into unique character level and combined character level errors.207

– Unique Character: It occurs due to the similar shapes of different single characters, such208

as ই-ঈ, উ-ড-ঊ, ঔ-ঐ, ব-র, etc. Example: যত্নসহকাের → যত্নসহকােব, ডাগরআঁিখ → ড়াগরআঁিখ.209

– Combined Character: Unlike unique character level errors, it happens because of the sim-210

ilar visual shape of different combined characters with other combined or single characters,211

like তৰ্-এ, ত্ত-ও, ষ্ক-স্ক, স্ট-ষ্ট, and so on. Example: ছাতৰ্লীগ → ছাএলীগ, অংস্কান্ত → অংষ্কান্ত.212

• Typographical Error: It refers to typing mistakes that occur when we inadvertently press the213

wrong key while writing. Moreover, it could further be split into the following four categories214

based on mistakes:215

– Typo Deletion: It results from skipping characters while typing a word. For example,216

েচৗচাপেট → েচৗচােট, চন্দৰ্মুখ → চন্দৰ্মখ , যত্নবতী → যত্নতী , etc.217
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– Typo Substitution: It happens because of pressing the wrong key to write a particular218

character. Since there exist both phonetic and unicode-based Bangla keyboards, we consider219

the most popular keyboards of these types, namely Avro and Bijoy. That means typo220

substitution errors are generated with respect to two keyboards:221

∗ Typo substitution errors for Avro keyboard222

∗ Typo substitution errors for Bijoy keyboard223

Example: ঠকান → ফকান(Bijoy Keyboard), টকান(Avro Keyboard).224

– Typo Transposition: It emerges as a result of putting the (N+1)th letter of a given word225

in place of the N th letter and the N th letter in place of the (N +1)th letter, such as বাসভবন226

→ বাসবভন, অলংঙ্কার → অংলঙ্কার, ধুমব্ল → ধুম্লব, etc.227

– Typo Insertion: It occurs due to the inadvertent inclusion of a character or redundant228

letter while writing a word. For example, রসাত্মক → রসাতত্মক, উপেযাগীকরণ → উপযেযাগীকরণ ,229

ভূেতর → ভূেতরর, etc.230

• Split-word Error: It is caused by adding additional space when writing a word which essentially231

produces two words where one of these three cases could happen: (a) both words are correct, (b)232

both words are wrong, and (c) only one of them is correct. Hence, it could be classified into the233

following four types based on where the extra space is placed.234

– Split-word Both: The space is placed in such a fashion, case (a), that both sides of the235

space form two correct words. Example: ক্ষীণচন্দৰ্ → ক্ষীণ চন্দৰ্, উচ্চবেণর্র → উচ্চ বেণর্র.236

– Split-word Random: It generates two incorrect words because of the inclusion of extra237

space which denotes case (b). Example: রক্তক্ষয়ী → রক্ তক্ষয়ী, দশর্নেযাগয্ → দর্ শনেযাগয্.238

– Split-word Left: The space is placed in such a way, case (c), that the left side of the239

space remains a valid word whereas the right side is not. Example: অসম্পন্নতােবাধক → অসম্পন্ন240

তােবাধক, পৰ্িতকূলাচরণ → পৰ্িত কূলাচরণ.241

– Split-word Right: It is the opposite of the split-word left error. Here, the left side of the242

space turns into an incorrect word whereas the right side becomes a valid word. Example:243

উপেভাগকারী → উপ েভাগকারী, ইষ্টাপূতর্ → ইষ্টা পূতর্.244

• Run-on Error: It arises from the omission of a space between two correct words in a sentence,245

resulting in the formation of an incorrect word. Example: রাস্তাঘাট (ৈতির) → রাস্তাঘাটৈতির, বাংলার246

(মািট) → বাংলারমািট247

We create a large-scale parallel corpus for Bangla spelling error detection and correction by incor-248

porating all 14 types of spelling errors. It begins with collecting unerring words, followed by synthetic249

error generation and further error filtration. Moreover, our proposed method for synthetic error gen-250

eration is applicable to any Bangla text corpus.251
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3.1 Word Accumulation252

The process of synthetic data generation begins with the collection of error-free words through web253

scraping, which involves automatically extracting web data from a website by parsing its HTML code254

[37]. In our case, we focus exclusively on the online dictionary domain, which contains accurate words.255

We gather our data from a popular open-source Bengali-to-Bengali dictionary1. To begin, we define256

a set of N distinct Bengali characters denoted by C = {C1, C2, ..., CN}, where Ci represents the ith257

character. We perform web scraping to retrieve raw texts from the dictionary for each character Ci ∈ C.258

For this purpose, we utilize two well-known web scraping libraries: Requests2 and BeautifulSoup3.259

Requests is used to extract the HTML codes, while BeautifulSoup helps in extracting the text data.260

Since the open-source dictionary provides a search engine that allows us to filter out words starting261

with a specific character Ci ∈ C, we generate the corresponding URLs for each character, where all262

the words starting with that character can be found. The Requests library is employed to make HTTP263

requests and retrieve the HTML code response, which we then parse. Using the BeautifulSoup library264

with the LXML parser, we extract the desired text from the HTML code response. At this stage, we265

obtain a list of error-free words that require further preprocessing. To facilitate the cleaning process,266

we construct another set of non-repetitive, frequently occurring Bengali characters, which includes a267

space, denoted as D = {D1, D2, ..., DK}. We then iterate through the collected unprocessed text data268

and remove any characters that are not present in our constructed set of frequent Bengali characters,269

D. Finally, all the preprocessed errorless words, represented as W = [W1,W2, ...,Wp], where Wk ∈ W270

is an error-free word starting with Ci, are stored in a CSV file and saved on the local machine for271

further use.272

3.2 Error Annexation273

At this stage, we introduce the non-word errors discussed earlier into the errorless words list W .274

Separate dictionaries are created to introduce cognitive, visual, typographical substitution, and run-on275

errors. These dictionaries can be represented as {P1 : L1, P2 : L2, ..., PN : LN}, where Pn represents276

a key such that Pn ∈ C, and Ln is the list of potential erroneous characters associated with that key277

Pn. The dictionaries consist of N character keys denoted as P = [P1, P2, ..., PN ], where Pn is the nth278

character in C. Additionally, Ln is the list of potential erroneous characters for each key Pn ∈ P ,279

denoted as Ln = [L1, L2, ..., LR], where Li represents the ith potential erroneous character such that280

Li ∈ D and Li ̸= Pn. To introduce cognitive, visual, typographical, substitution, and run-on errors to281

the words Wi ∈ W , we make use of dictionaries that were previously constructed. However, we employ282

list comprehension to introduce typographical deletion, transposition, insertion, and split-word errors.283

Additionally, we compile a list of homonym errors using a similar approach employed for gathering284

the list of error-free words, W . It is worth noting that we deliberately modify a single character of285

an accurate word to introduce different types of errors. Ultimately, we construct a large-scale parallel286

corpus denoted as M = {S1 : T1, S2 : T2, ..., St : Tt}, where each Mi represents an ith source (Si) -287

target (Ti) pair, with the source being the erroneous word and the target being the accurate word.288

1https://accessibledictionary.gov.bd/
2https://pypi.org/project/requests/
3https://pypi.org/project/beautifulsoup4/
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3.3 Error Filtration289

Several types of synthesized errors, namely typo deletion, typo Avro substitution, and typo Bijoy290

substitution, appear to generate certain vague errors to some extent. These errors are produced by291

an employed dictionary lookup table ({P1 : L1, P2 : L2, ..., PN : LN}), resulting in a wide range292

of error variations, surpassing the typical range of human mistakes. To address this, we employ a293

transformer-based language model depicted in Figure 1(a) to identify and filter out these rare and294

unnecessary errors, thereby enhancing the sophistication of the corpus. The error filtration model295

effectively removes these infrequent errors. We utilize the same transformer architecture employed296

in the detector, purificator, and corrector networks for error filtration. By incorporating a modified297

corrector network in our DPCSpell, we exclude the atypical error patterns associated with these three298

error types that are unlikely to be made by humans. We have made the final corpus publicly available,299

which can be found at https://tinyurl.com/DPCSpell.300

Error Type #No. of Instances Percentage

Cognitive Error 186,620 13.52%
Homonym Error 123 0.01%
Visual Error (Single Character) 113,912 8.25%
Visual Error (Combined Character) 17,313 1.25%
Typographical Deletion 102,550 7.43%
Typographical Substitution (Bijoy) 222,930 16.15%
Typographical Substitution (Avro) 174,248 12.62%
Typographical Transposition 122,939 8.90%
Typographical Insertion 124,767 9.04%
Run-on Error 124,895 9.05%
Split-word Error (Left) 51,610 3.74%
Split-word Error (Right) 13,985 1.01%
Split-word Error (Random) 111,974 8.11%
Split-word Error (both) 12,798 0.93%

Total = 1,380,664

Table 1: Statistic of the Bangla SEC corpus

3.4 Corpus Statistic and Error Percentage Validation301

Table 1 provides an overview of the statistics for the final corpus. Among the different error types,302

typographical substitution (Bijoy) exhibits the highest number of erroneous pairs, comprising 16.15%303

of the corpus, followed by typographical substitution (Avro) at 12.62%. In contrast, homonym errors304

account for a mere 123 instances, representing the smallest proportion among all error types. Ex-305

amining individual error categories, five out of the 14 categories contain less than 5% errors, while306

typographical substitution (Bijoy) stands out with over 15% errors. The remaining categories exhibit307

approximately 10% errors each. Among the five major error categories, phonetic, visual, typographical,308
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run-on, and split-word errors account for 13.53%, 9.50%, 54.14%, 9.05%, and 13.77% of the corpus,309

respectively. It is noteworthy that typographical errors contribute slightly more than half of the total310

errors, aligning with our initial expectations based on inspection.311

The percentages of errors in the corpus are not predetermined by us, as they depend on the charac-312

teristics of the corpus itself. Specifically, the error annexation process relies solely on the constructed313

dictionaries for each error type. Considering the potential set of erroneous characters (Ln ∈ L) for each314

key in the dictionary (Pn ∈ P ), it is expected that the number of typographical errors would be higher315

compared to other error types. To validate the error percentages in the corpus, we conducted a thor-316

ough analysis of human tendencies to make errors while writing, using real-world data. We collected317

a substantial amount of data from the comment sections of public Facebook4 posts. Subsequently,318

we cleaned the corpus of these comments and searched for erroneous words based on our generated319

corpus (M). The results of this inspection provided further validation of the percentage distribution320

of different error types in our corpus. In most categories, we found a similar proportion of erroneous321

words in the real-world corpus, confirming the accuracy of our corpus composition. It is worth noting322

that the percentage of typographical deletion errors deviated from the expected proportion, which was323

anticipated due to the reasons mentioned earlier. However, to ensure fairness in the inspection process,324

we created a balanced version of our corpus where no error type accounted for more than 10% of the325

entire corpus. This approach allows for a comprehensive evaluation of the different error categories326

within a controlled and equitable framework.327

4 Methodology328

Detector

Module MASK

Purificator

Module MASK

Corrector

Module

Corrector

Module

(a) Direct correction (b) The proposed method where correction is generated using detected and further
purified masks input

Top-K Corrections

Input

Top-K Corrections

Input

Figure 1: (Left) A direct correction approach which takes a sequence as input and corrects the whole
sequence regardless of its correctness. (Right) Our proposed DPCSpell which takes a sequence as
input and detects and purifies the erroneous portion in the sequence. Finally the corrector module
fixes the faulty segment of the sequence only.

4https://www.facebook.com/
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4.1 Problem Formulation329

The character-level spelling error rectification task aims to map an erroneous sequence denoted as330

XI = {XI1 , XI2 ,…, XIN } into the corresponding correct sequence represented as Ŷ = {Ŷ1, Ŷ2,…, ŶM}331

where XIj and Ŷj are characters of the same language, and N ∈ Z+ and M ∈ Z+ but not necessarily332

required to be equal.333

Our proposed method consists of three modules: the detector module D(.), the purificator module334

P(.), and the corrector module C(.). In the detector module, XI is inputted to identify the positions335

of erroneous characters. These erroneous characters are then replaced with a special token, [MASK],336

resulting in XD = {XD1 , XD2 ,…, XDN
}, where XDj is equal to XIj if the jth character is correct,337

otherwise it is the special token, [MASK]. Next, in the purificator module, an amalgamation of338

XI and XD, denoted as XID = {<SEP > +XI+ <SEP > +XD+ <SEP >}, is used as input.339

The special token <SEP > is used to distinguish between XI and XD. The purificator module340

further refines the detected erroneous positions, resulting in XP = {XP1
, XP2

,…, XPN
}. Finally, the341

corrector module focuses on correcting only the detected erroneous characters rather than correcting342

all the characters in XI . It combines the initial erroneous sequence XI with the detected and purified343

positions of erroneous characters in XP . This combined sequence is represented as XIP = {<SEP>344

+XI+ <SEP> +XP+ <SEP>}. The XIP is then used as input to the model, which generates the345

corresponding correct sequence Ŷ .346

4.2 Overview of DPCSpell347

The working mechanism of DPCSpell, depicted in Figure 2, is an amalgamation of a detector, pu-348

rificator, and corrector network. The detector network (D(.)) employs a transformer to identify the349

positions of incorrect characters (XD) in an input sequence XI . Similarly, both the purificator (P(.))350

and corrector (C(.)) networks utilize transformers for their respective tasks. The purificator takes an351

amalgamation of XI and XD as input and produces a more precise mask, XID. Finally, the corrector352

transformer utilizes XI and XID to generate the correction Ŷ . To summarize, the framework’s de-353

tector module receives an erroneous word as input and attempts to detect the erroneous characters.354

On the other hand, the corrector module utilizes the refined mask from the purificator module, which355

incorporates the output of the detector, to generate appropriate corrections. The entire procedure can356

be mathematically represented as follows:357

Ŷ = C((XT
I ,P((X

T
I ,D(XT

I ;WD));WP ));WC) (1)

4.3 Motivations358

The recent emergence of NLP and deep learning has achieved astonishing success in spelling error359

correction. Currently, state-of-the-art spell checkers of different resource-constrained languages lever-360

age seq2seq models and employ a direct correction approach, as exemplified in Figure 1(a). However,361

these methods are end-to-end in nature and exhibit enormous false alarm rates, as they correct all the362

characters of the sequence regardless of its correctness. This problem is exacerbated when just a tiny363
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Figure 2: (Left) The detector network of DPCSpell which takes an input sequence as input and makes
an initial attempt to detect the erroneous portions of the sequence. (Middle) The purificator network
which takes the actual input sequence along with the detected sequence from the detector to further
purify the erroneous fragments of the sequence. (Right) The corrector network which combines actual
input with the purified sequence from the purificator to generate the correction.

Method Input Output
Direct অফিরনত → অ ফ র ি◌ ন ত অ প র ি◌ ণ ত → অপিরণত
DPCSpell অফিরনত → অ ফ র ি◌ ন ত অ প র ি◌ ণ ত → অপিরণত

Table 2: Comparison between the working mechanism of direct approaches and our proposed DPCSpell

percentage of wrong characters occur in the entire sequence, which appears to be a general trend, as364

evidenced in Table 2.365

DCSpell [38] addresses this problem by presenting a transformer-based detector-corrector frame-366

work that first determines whether a character is erroneous or not before correcting it, which we367

found rather inefficacious in correction generation. Since the correction generation largely relies on368

the detected erroneous character sequence, it often fails to precisely identify the positions of erroneous369

characters which essentially misguides the corrector network. We resolve this by introducing a pu-370

rificator in between the detector and corrector module that further cleanses the detected erroneous371

characters. Our proposed DPCSpell eliminates the drawbacks associated with direct correction ap-372

proaches as it only corrects the wrong characters in the sequence by detecting the erroneous portions in373

the input sequence beforehand. The addition of the purificator module delineates a lucid improvement374

over the detector-corrector framework. Furthermore, DPCSpell converges much quicker than both375

the detector-corrector and direct correction strategies. Figure 1(b) depicts our proposed DPCSpell,376

consisting of the detector, purificator, and corrector modules.377
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4.4 Structure of DPCSpell378

The building blocks of the transformer used in the detector, purificator, and corrector network is379

delineated in Figure 3. The encoder and decoder of the transformer comprised of a stack of five380

residual encoding and decoding blocks respectively.381

Multi-Head Self-Attention

Add & Normalize

Feed Forward Feed Forward

X1 X2 ... XN

Input Embedding

Positional Encoding

Add & Normalize

. . . . .

. . . . .
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co
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 X
 5

Input Embedding

Output Embedding

Positional Encoding

. . . . . Output Embedding

Masked Multi-Head Self-Attention

Add & Normalize

Feed Forward Feed Forward

Add & Normalize

. . . . .

Add & Normalize

Encoder-Decoder Attention

D
ec
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 B
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 X

 5

Linear

Softmax

Y1 Y2 ... YM

Positional Encoding

Positional EncodingPositional Encoding
Input Embedding Input EmbeddingInput Embedding

Output Embedding Output EmbeddingOutput Embedding

Figure 3: (Left) The encoding component of the transformer is a stack of identical encoders, which is
responsible for mapping an input sequence to a sequence of dense vector representations. (Right) The
decoding module which is also a stack of identical decoders. It accepts the encoded output from the
encoder along with the decoder output from the previous time step to generate a prediction sequence.

Encoder: The encoder takes the input sequence, XI = {XI1 , XI2 ,…, XIN }, and compresses it382

into a sequence of context vectors, Z = {Z1, Z2,…, ZK}, which capture the information from all tokens383

in XI , including their positions. To achieve this, each token XIi ∈ XI is first passed through an384

embedding layer, and then the positional encoding is added elementwise. This results in integrated385

embeddings that are ready to be processed by the multi-head attention layer. The multi-head attention386

layer incorporates h different attentions calculated from h heads in parallel. The self-attention can387

be seen as a combination of queries, keys, and values, where a scalar self-attention score is calculated388

by taking the dot product between the query and the key. The score is then divided by the square389

root of the size of the key vector and passed through a softmax layer. The resulting softmax score is390

then multiplied by the value vector, generating an attention vector for a specific head. The formula391
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for calculating the multi-head attention is as follows [39].392

MultiHead(Q,K, V ) = Concat(Head1,Head2, ..., Headh)W
o (2)

393

Headi = Attention(QWQ
i ,KWK

i , V WV
i ) (3)

394

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V (4)

Here, Q, K, and V refer to query, key, and value respectively and W j
i is their corresponding weight395

matrix. And dk denotes the dimension of the key vectors.396

Next, the responses of multi-head attention layer is then passed through position-wise feed-forward397

neural networks incorporating residual connections from input of the layer. The output of feed-forward398

layer is further normalized which is then ready to pass through next encoder block, except for the final399

encoding block which outputs a sequence of context vectors Z = {Z1, Z2,…, ZN} for the decoder.400

Decoder: The decoder (δ) is analogous to the encoder (ξ) but with two distinct multi-head401

attention layers: self-attention (masked) and encoder-attention. In the self-attention layer, the decoder402

representation serves as the query, while the encoder representations are used as the key and value403

in the standard multi-head attention layer for encoder-attention. The decoder representation from404

the final decoding block is then fed through a linear layer, followed by a softmax activation function,405

generating the output sequence Y = {Y1, Y2,…, YM}.406

4.4.1 Detector Network407

Given an input sequence XI = {XI1 , XI2 , XIN }, the detector aims to identify and label potential408

erroneous characters. It returns a labeled sequence XD = D(XI) = {XD1 , XD2 , XDN
}, where the409

positions of potential erroneous characters are masked. If the ith character XIi ∈ XI is deemed410

erroneous, it is replaced with a special token called [MASK] (XDi = [MASK]). Otherwise, it copies411

the corresponding character from the input sequence (XDi = XIi , as shown in eq. 5). The detected412

erroneous sequence XD is generated by passing the decoded representation of XI through a linear413

layer, Fd.414

XDi
=

[MASK], if softmax(Fd(δd(ξd(XIi)) = index([MASK])

XIi , otherwise
(5)

We use the categorical cross-entropy loss function to measure the goodness of fit of our method which415

is demonstrated in eq. 6 and adam optimizer with a constant learning rate to minimize the loss.416

CED = −
N∑
i

XDactual
log(D(softmax(Fd(δd(ξd(XIi)))) (6)

Where XDactual
is the ground truth sequence of XI and D(softmax(Fd(δd(ξd(XIi))) is the detected417

sequence from the detector, D.418
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4.4.2 Purificator Network419

The purificator module is identical to the detector except for the input sequence. It concatenates the420

detected sequenceXD with initial inputXI such thatXID = {<SEP> +XI+ <SEP> +XD+ <SEP>421

}. It further purifies the detected erroneous character sequence XD and returns an updated labeled422

sequence XP = P(XI , XD) = {XD1 , XD2 , ..., XDN
} from XID. Mathematically XP can be defined as423

follows:424

XPi
=

[MASK], if softmax(Fp(δp(ξp(XIi , XDi)) = index([MASK])

XIi , otherwise
(7)

Similar to detector, here we use cross-entrophy loss function and adam optimizer with an unvarying425

learning rate.426

CEP = −
N∑
i

XDactual
log(P(softmax(Fp(δp(ξp(XIi , XD)))) (8)

4.4.3 Corrector Network427

The corrector module takes an amalgamation of the initial input sequence XI , as well as the detected428

and further purified masks XP from the purificator, as input. It generates the corrections Ŷ =429

C(XI , XIP ) = {Ŷ1, Ŷ2, ..., ŶN}. Similar to the purificator, it concatenates XI and XP in the form430

of XIP = {<SEP> +XI+ <SEP> +XP+ <SEP>}. The vocabulary of corrector is denoted as431

V = {V1, V2, ..., VN} where Vi is the ith character of a particular language. For each character position432

XIP i ∈ XIP with the [MASK] token, the corrector (C(.)) predicts a character Ŷi ∈ V . The encoder433

(ξc(.)) of the corrector network generates a sequence of context vectors ZC = {ZC1 , ZC2 , ...ZCN
} for each434

character ZIP i ∈ ZIP . The encoder representation (ER) is then passed through the decoder (δc(.)),435

and the decoder representation (DR) is processed through a fully connected layer Fc to generate the436

correction Ŷ .437

ER = ξc(XIP ) (9)
438

DR = δc(ER) (10)
439

Ŷ = softmax(F(DR;EN)) (11)

Here we employ the cross-entropy loss function to measure the goodness of fit of our corrector network440

which is denoted in equation-12 and adam optimizer with a steady learning rate to minimize the loss.441

CEC = −
N∑
i

XIactual
log(softmax(Fc(δc(ξc(XIi , XP )) (12)

Where XIactual
is the gold standard annotation of XI and softmax(Fc(δc(ξc(XIi , XP ) denotes the442

generated correction from the corrector network C.443

5 Experimental Analysis444
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We adopt a standard train-validation-test set approach, widely used for the spelling error correction445

task [40, 41, 42]. By dividing the data into three sets - training, validation, and test - we prevent the446

model from merely memorizing the training examples, enabling a better assessment of its ability to447

generalize. The segregation of these sets is paramount, guaranteeing a dependable appraisal of the448

model’s prowess on previously unseen data. Moreover, when comparing different models, using the449

same test set is pivotal to ensure fair and accurate comparisons. This rigorous methodology enhances450

the reliability of our spelling error correction method.451

5.1 Datasets452

5.1.1 Bangla453

We use our large-scale parallel corpus for Bangla spelling error correction. To do so, we split our454

corpus into training, validation, and test sets for further use. However, the instances of our Bangla455

SEC corpus have been exemplified in Table 3.456

Training Set The training set accounts for 80% of the data in the corpus. We take 80% of the data457

from each individual error type to prevent the corpus from being biased. The training set comprises458

1,104,531 correct-erroneous word pairs.459

Validation Set We keep only 5% of the data from the corpus in the validation set. Similar to the460

training set, we consider 5% of each error category to construct this set as well. As a result, the461

validation set contains 69,034 instances.462

Test Set It is comprised of 15% errors of all 14 error types, as we did in the training and validation463

sets. It accounts for 207,099 instances of the corpus.464

Source Mask Target Error Type

জাগরন জাগর_ জাগরণ Cognitive Error
উদ্ধত উদ্_ত উদয্ত Homonym Error
েশাভাকবণ েশাভাক_ণ েশাভাকরণ Visual Error (Single Character)
এইহ্মণ এই__ণ এইক্ষণ Visual Error (Combined Character)
ভিমষ্ট _িমষ্ট ভূিমষ্ট Typographical Deletion
েযাহয্তর েযা_◌য্তর েযাগয্তর Typographical Substitution (Bijoy)
ঈষৎভঞ্চল ঈষৎ_ঞ্চল ঈষৎচঞ্চল Typographical Substitution (Avro)
নবড়েড় নড়বেড় ন__েড় Typographical Transposition
উপযেযাজন উপয_ে◌াজন উপেযাজন Typographical Insertion
জাগৰ্ৎকুমর্ জাগৰ্ৎ_____ জাগৰ্ৎ Run-on Error
জন্ম চেকৰ্ জন্ম_চেকৰ্ জন্মচেকৰ্ Split-word Error (Left)
িচহ্ন িবেশষ িচহ্ন_িবেশষ িচহ্নিবেশষ Split-word Error (Right)
মেহৗ ষধ মেহৗ_ষধ মেহৗষধ Split-word Error (Random)
অিস্থ িবষয়ক অিস্থ_িবষয়ক অিস্থিবষয়ক Split-word Error (both)

Table 3: Instances from the Bangla SEC corpus
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5.1.2 Hindi and Telugu465

We utilize the Hindi and Telugu parallel corpora used in [7] along with their training and test sets. The466

training and test sets of the Hindi corpus contain 90,489 and 9,049 instances, respectively. Likewise,467

there are 64,518 training and 7,727 test pairs in the Telugu corpus.468

Hindi* We enhance the corpus by introducing nine types of errors including cognitive, visual (single),469

typographical insertion, typographical deletion, typographical transposition, run-on, split-word left,470

split-word right, split-word random, and split-word both errors. The enriched training and test sets471

include 177,038 and 19,660 instances, respectively.472

Telugu* We bring forward variety in the Telugu corpus by incorporating those nine errors that were473

previously introduced in the Hindi corpus. Consequently, the enhanced training and test set contain474

214,828 and 20,279 correct-erroneous word pairs, respectively.475

Hindi Telugu

Source Mask Target Source Mask Target

अɟनयमीत अɟनयम_त अɟनयɠमत మొ్తం మొ_తం మొతత్ం
साक स_क सक జోయ్తి లÑȗ జోయ్తి_లÑȗ జోయ్తిలÑȗ
अनुȵाना अनुȵान_ अनुȵान సాథ్ నాు సాథ్ నా_ సాథ్ నాలు

Table 4: Examples from the enhanced Hindi (left) and Telugu (right) SEC corpus

5.2 Baselines476

We compare our method with seven baselines including several state-of-the-art methods of different477

resource-scarce languages.478

• RuleBased [13]: This method utilizes Double Metaphone and Edit Distance algorithms for479

Bangla spelling error detection and correction.480

• GRUSeq2Seq: Bahdanau et al. [43] enriches the conventional RNN encoder-decoder archi-481

tecture, by allowing the model to focus only on the pertinent details from the encoder while482

generating a target word, for neural machine translation, where GRU is employed in both the483

encoder and decoder. We make it a baseline for Bangla spelling error correction through Bangla-484

to-Bangla translation.485

• LSTMSeq2Seq [7]: This method brings forward a character level seq2seq model utilizing LSTM486

cells in both the encoder and decoder for spelling error correction of two resource-scarce Indic487

languages namely Hindi and Telugu.488

• ConvSeq2Seq: Gehring et al. [44] presents a fully convolutional sequence-to-sequence architec-489

ture with an attention module for neural machine translation. We consider it as another baseline490

to rectify Bangla spelling errors through Bangla-to-Bangla translation.491
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• VocabLearner [2]: This method introduces a word-level vocabulary learner for Bangla spelling492

error correction by employing a 1D CNN-based architecture named Coordinated CNN (CoCNN).493

• DTransformer [45]: This method utilizes a denoising autoencoder transformer for spelling494

error correction, on a short input string, for four resource-limited languages. The autoencoder495

is employed for synthetic error annexation, whereas the transformer is responsible for error496

rectification.497

• DCSpell [38]: This method initiates a transformer-based detector-corrector framework, where498

a character is detected first whether it is erroneous or not before being corrected, to rectify499

Chinese spelling errors.500

5.3 Performance Evaluation501

We evaluate the performance of our method using Precision, Recall, F-scores, Exact Match, and502

Modified Accuracy.503

5.3.1 Precision, Recall, and Fβ-score504

Precision denotes the credibility of a model by signifying the quality of its positive predictions, whereas505

recall quantifies the proportion of actual positives precisely identified by the model. Precision is506

beneficial in such situations when a False Positive (FP) is more of a concern than a False Negative507

(FN). In contrast, recall is a useful metric in such scenarios where False Negative (FN) is highly508

expensive. The formulas for calculating the precision and recall are as follows.509

Precision =

∑n
i=1|gi ∪ ei|∑n

i=1|ei|
(13)

Recall =

∑n
i=1|gi ∪ ei|∑n

i=1|gi|
(14)

where gi and ei denote gold-standard targets and model’s predicted levels for ith word such that510

Wi ∈ W . The intersection for gold-standard targets and model’s predicted levels for a given word511

Mi ∈ M is considered as,512

gi ∪ ei = {e ∈ ei | ∃g ∈ gi,match(g, e)} (15)

F-measure is the harmonic mean of precision and recall. It is required for comparing different513

models with high recall and low precision scores. We calculate the Fβ-scores for β values of 1 and 0.5.514

The formula for calculating Fβ-score is as follows.515

Fβ score =
(1 + β2)× Precision×Recall

(β2 × Precision) +Recall
(16)

Eq. 16: β=1 (F1-score) and β=0.5 (F0.5-score) denote equal weighting of precision and recall, and516

emphasize on precision while calculating the score517
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5.3.2 Exact Match (EM)518

It delineates the efficacy of the model across all classes like accuracy (= (TP + TN)/(TP + FP +519

TN + FN)), where TP, TN, FP, FN refers to True Positive, True Negative, False Positive, and False520

Negative). The output of the model (µ(x)) is deemed to be correct when the prediction (ŷ) exactly521

matches the label (y). The equation is as follows.522

f(x) =

1, if ŷ = µ(x) = y

0, otherwise
(17)

EM is the ratio of the number of correct predictions and total instances. The higher the EM score,523

the better the model performance. The formula for calculating the EM score is a follows.524

EM =

∑N
1 f(x)

N
(18)

Eq. 18: where
∑N

1 f(x) is the number of correct prediction, and N refers to the number of instances525

5.3.3 Modified Accuracy (MA)526

We calculate the accuracy within the top-K predictions and call it Modified Accuracy. Unlike accuracy,527

in our case Exact Match, it elucidates the effectiveness of a model over corpora. The prediction is528

considered positive if any outcome within top-K can be found in the desired corpus. The formula to529

evaluate a prediction whether it is positive or not is as follows.530

g(x) =

1, if ŷ = µ(x) = topK ϵ W

0, otherwise
(19)

MA, similar to EM, is calculated as the ratio of total positive predictions and instances of the corpus.531

A higher MA score denotes the credible performance of the model. The formula for calculating the532

MA score is a follows.533

MA =

∑N
1 g(x)

N
(20)

Eq. 20: where
∑N

1 g(x) and N denote number of positive predictions and instances in the corpus534

5.4 Hyperparameters535

The encoder and decoder of our detector, purificator, and corrector network is a combination of 5536

encoding and decoding layers respectively. Moreover, we use 8 attention heads in both encoder and537

decoder. A hidden size of 128 is employed in the encoder and decoder while we kept the pf dimension538

two-fold of the hidden dimension. Next, a dropout ratio of 10% has been employed in the encoder539

and decoder in all three modules to avoid overfitting issues. Likewise, we clip the gradient at 1 to540

eliminate the drawback of exploding gradient. Finally, we use a constant learning rate of 5e − 4 in541

adam optimizer to minimize the loss and train the detector, purificator, and corrector network for 100542

epochs respectively.543
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5.5 Main Results544

5.5.1 Spelling Error Correction for Bangla Language545

We compare the performances of several state-of-the-art methods and our constructed baselines with546

our proposed DPCSpell for rectifying Bangla spelling errors. To ensure a fair comparison, we train,547

validate, and test these methods on our parallel corpus. The empirical outcome of these approaches548

can be found in table 5.549

Method EM MA PR RE F1 F0.5

RuleBased [13] 55.71% − 0.5620 0.5571 0.5578 0.5598
GRUSeq2Seq [43] 75.56% 76.56% 0.8072 0.7556 0.7726 0.7899
ConvSeq2Seq [44] 78.85% 80.10% 0.8452 0.7885 0.8259 0.8259
VocabLearner [2] 22.47% − − − − −
DTransformer [45] 90.44% 91.12% 0.9061 0.9044 0.9047 0.9056
DCSpell [38] 84.23% 85.07% 0.8458 0.8423 0.8434 0.8446
DPCSpell 94.78% 95.16% 0.9487 0.9478 0.948 0.9483

Table 5: The comparison of the quantitative outcomes of our proposed DPCSpell with other methods
in the Bangla SEC task

Our proposed DPCSpell outperforms all the listed methods in table 5 by a convincing margin.550

It outperforms RuleBase[13], GRUSeq2Seq[43], and ConvSeq2Seq[44] by a higher Exact Match (EM)551

score of 39.07%, 19.22%, and 15.93%, respectively. Likewise, it outperforms DCSpell[38] by an EM552

score of 10.55%, a Modified Accuracy (MA) score of 10.09%, a precision (PR) score of 0.1029, a recall553

(RE) score of 0.1055, an F1 score of 0.1046, and an F0.5 score of 0.1037. Besides, it suppresses554

the effectiveness of the recent Bangla spelling error correction method named VocabLearner[2] by555

accomplishing a 72.31% higher EM score. Moreover, it improves the performance of DTransformer[45],556

which is the second best method to ours, by attaining higher EM, MA, PR, RE, F1, and F0.5 scores557

of 4.43%, 4.04%, 4.26%, 4.34%, 4.33%, and 4.27%, respectively.558

In addition, table 5 depicts a thorough comparison between rule-base, GRU-base, convolution-559

based, and transformer-based methods. The rule-based method performs the worst followed by GRU-560

based and convolution-based methods. However, convolution-based method slightly improved the per-561

formance of GRU-based methods. In contrast, transformer-based methods show promising result. We562

compare, one-stage, two-stage, and three-stage transformer-based methods which are DTransformer,563

DCSpell, and DPCSpell, respectively. The empirical outcome delineates that two-stage DCSpell per-564

forms worst among these three, where our proposed three-stage DPCSpell performs the best.565

5.5.2 Bangla Spelling Error Analysis566

To examine the effectiveness of our method in Bangla spelling error correction, we compare the per-567

formance of individual error types with two competitive methods in table 6. It outperforms both568

DTransformer and DCSpell by a significant EM score in all individual error types. Likewise, it ex-569

ceeds the listed methods in terms of MA in all individual error categories, except homonym error570
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where DTransformer achieves the highest score. However, it performs poorly in the case of correcting571

homonym errors due to the insufficient number of training instances.572

Error Type DTransformer DCSpell DPCSpell

EM MA EM MA EM MA

Homonym Error 11.38% 73.98% 11.38% 67.04% 17.07% 72.36%
Typo Deletion 90.92% 91.36% 79.59% 80.02% 94.07% 94.38%
Typo Substituition (Bijoy) 91.80% 91.95% 85.98% 86.26% 95.55% 95.67%
Typo Substituition (Avro) 93.35% 93.50% 89.40% 90.09% 97.55% 97.63%
Visual Error (Single) 79.98% 80.96% 77.48% 78.38% 90.85% 91.61%
Cognitive Error 90.21% 90.73% 83.12% 83.58% 94.79% 95.25%
Typo Transposition 87.43% 89.01% 81.58% 82.32% 93.35% 94.70%
Visual Error (Combined) 93.27% 82.14% 88.50% 76.97% 96.21% 82.13%
Run-on Error 88.32% 89.37% 80.71% 83.34% 90.09% 90.75%
Typo Insertion 97.16% 97.27% 91.66% 92.73% 99.68% 99.72%
Split-word Error (Left) 92.64% 94.63% 86.65% 88.13% 95.38% 97.64%
Split-word Error (Right) 93.88% 95.26% 80.00% 81.09% 97.71% 98.43%
Split-word Error (Random) 89.80% 92.74% 82.85% 85.29% 93.96% 95.12%
Split-word Error (both) 93.59% 95.10% 86.32% 87.64% 96.41% 97.36%
Weighted Average 90.44% 91.12% 84.23% 85.07% 94.78% 95.16%

Table 6: The comparison of the quantitative outcomes of our proposed DPCSpell in individual error
types of the Bangla SEC with other competitive methods

For further analysis, we compare some rectification findings of these methods on the test data in573

table 7 where the tick and cross marks denote whether the prediction of the method is correct or not.574

We randomly choose six out of 14 error types to demonstrate the qualitative outcomes of DTrans-575

former, DCSpell, and DPCSpell. The empirical outcomes of our DPCSpell validate its effectiveness576

in correcting Bangla spelling errors. Especially, our method is proficient in rectifying all types of577

errors, whereas DTransformer and DCSpell suffer from correcting words with longer sequences and578

combined characters. However, the mistakes made by our method are also quite relevant. In the case579

of homonym errors, even though it fails to generate the actual correction (আহুিত) of the erroneous word580

(আহূিত), the prediction (আহত) itself is a correct word and makes complete sense. In another example,581

our DPCSpell generates ককর্শ for the erroneous word আককর্শ, whereas the actual correction is অককর্শ.582

Once again, even if the correction is a valid word, it fails to generate the actual correct word due583

to imprecise mask prediction. The detector module predicted the mask as __ককর্_ and the purificator584

module further purified it to __ককর্শ, where the actual mask should be অ_ককর্শ, consequently leading585

to an imprecise correction.586
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Homonym Error Typographical Deletion
Input: আহূিত Input: উত্তারাধকারসূেতৰ্

(DTransformer) আহুিত ✓ (DTransformer) উত্তারাধকারসূেতৰ্ 5

(DCSpell) আহূত 5 (DCSpell) উত্তারাধকারসূেতৰ্ 5

(DPCSpell) আহত 5∗ (DPCSpell) উত্তারািধকারসূেতৰ্ ✓
Run-on Error Visual Error (Combined)

Input: ক্ষিতপূরণাথর্অলাগ Input: ঝাঁজিবিশস্ট
(DTransformer) ক্ষিতপূরণাথর্ ✓ (DTransformer) লাফজিবিশস্ট 5

(DCSpell) ক্ষিতপূরণাথর্অলাপ 5 (DCSpell) ঝাঁজিবিশষ্ট ✓
(DPCSpell) ক্ষিতপূরণাথর্ ✓ (DPCSpell) ঝাঁজিবিশষ্ট ✓

Split-word Error (both) Typographical Insertion
Input: িতৰ্রািশ Input: সফললতার

(DTransformer) িতৰ্ রািশ ✓ (DTransformer) সফলতার ✓
(DCSpell) িতৰ্ রািশ ✓ (DCSpell) সঁলতার 5

(DPCSpell) িতৰ্ রািশ ✓ (DPCSpell) সফলতার ✓

Table 7: Comparison of our proposed DPCSpell with other competitive methods in relation to the
qualitative result of Bangla SEC task

5.5.3 Spelling Error Correction for Resource-Scarce Indic Languages587

We compare the performance of our method with three other tactics including LSTMSeq2Seq, DTrans-588

former, and DCSpell in two low-resource Indic languages namely Hindi and Telugu, which are Sanskrit-589

oriented and follow left-to-right typing script like Bangla [2]. The performance of these methods can590

be found in table 8. Despite the fact that DTransformer performs incredibly well in both languages,591

our proposed DPCSpell achieves competitive performance with it. Most importantly, we notice that592

our method starts outperforming other approaches when it has a sufficient amount of training data.593

Initially, it was the worst performing method for Hindi and Telugu when training on a tiny corpus594

of Hindi and Telugu respectively from [7]. Afterwards, we enhance these corpora by incorporating595

nine types of spelling errors, utilizing our corpus creation tactic. Consequently, it outperforms LSTM-596

Seq2Seq and DCSpell for both Hindi and Telugu SEC task. It suppresses the performance of DCSpell597

for Hindi SEC by EM score of 1.13%, and PR, RE, F1 and F0.5 scores of 8.5 × 10−3, 1.13 × 10−2,598

1.39×10−2, 6.2×10−3. Meanwhile, it attains more competitive performance with DTransformer while599

outperforms DCSpell for Telugu SEC by improving its prior EM, PR, RE, F1, and F0.5 scores by600

1.83%, 5.84× 10−2, 1.83× 10−2, 2.39× 10−2, 3.82× 10−2, respectively.601

In comparison to our method’s performance on Bangla where DPCSpell outperforms all the listed602

methods including DTransformer, it appears to suppress the performance of other methods on large-603

scale corpora as it shows a lucid improvement in its performance on the enhanced corpora. Since the604

enhanced Hindi and Telugu corpus is 6.54% and 5.64% times smaller than the Bangla corpus, it will605

perform even better in the Hindi and Telugu languages for large enough corpora.606
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Method EM PR RE F1 F0.5 Corpus
Lang.

LSTMSeq2Seq [7] 85.40% − − − − Hindi
DTransformer [45] 90.43% 0.906 0.9043 0.9066 0.9075 Hindi
DCSpell [38] 82.18% 0.8724 0.8218 0.8386 0.8562 Hindi
DPCSpell 78.64% 0.8431 0.7864 0.8207 0.8238 Hindi
DTransformer [45] 96.71% 0.976 0.9671 0.9663 0.976 Hindi*
DCSpell [38] 85.80% 0.9588 0.8580 0.8912 0.9248 Hindi*
DPCSpell 86.93% 0.9673 0.8693 0.9051 0.9310 Hindi*

LSTMSeq2Seq [7] 89.30% − − − − Telugu
DTransformer [45] 95.66% 0.9587 0.9566 0.9585 0.9593 Telugu
DCSpell [38] 91.05% 0.9225 0.9105 0.9203 0.9256 Telugu
DPCSpell 88.58% 0.9058 0.8858 0.9008 0.9066 Telugu
DTransformer [45] 98.88% .9872 .9888 .9899 .991 Telugu*
DCSpell [38] 89.91% 0.9629 0.8991 0.9209 0.9422 Telugu*
DPCSpell 90.41% 0.9642 0.9041 0.9247 0.9448 Telugu*

Table 8: The comparison of the quantitative outcomes of our proposed DPCSpell with other com-
petitive methods for resource-scarce Indic languages such as Hindi and Telugu, where ∗ indicates the
enhanced corpus.

5.6 Ablation Study607

In this subsection, we investigate the impact of several DPCSpell components including the effect of608

the detector and purification module, masked characters, and beam search decoding for Bangla spelling609

error correction.610

Method Mask Correction

EM EM PR RE F1 F0.5 MA

C − 90.44% 0.9061 0.9044 0.9047 0.9056 91.12%
D+C 88.54% 84.23% 0.8458 0.8423 0.8434 0.8446 85.07%
D+P+C 96.86% 94.78% 0.9487 0.9478 0.948 0.9483 95.16%

Table 9: Impact of different components of our proposed DPCSpell on the performance of the Bangla
SEC task

5.6.1 Effect of the Detector Network611

The detector module identifies the position of the erroneous characters in the input word and replaces612

them with a mask. As a result, the corrector module can only rectify the erroneous characters rather613

than the entire sequence. Furthermore, the corrector module becomes heavily reliant on the detector614
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module’s efficacy for the same reason. From table 9, we observe that the corrector module without615

the detector (C), which is analogous to the DTransformer[45], performs better than the detector and616

corrector modules together (D+ C), which is similar to the DCSpell[38], because the detector (D) fails617

to precisely identify the erroneous characters of the word which consequently misleads the corrector618

(C) and degrades its performance.619

5.6.2 Effect of the Purificator Network620

The purificator (P) detects the erroneous letters in a word by further purifying the masked output of621

the detector (D), which in turn allows the corrector (C) to amend the erroneous portion only rather622

than the whole word. Table 9 reveals that the purificator improves the EM score of the detector623

module by 8.32%. It detects the masks with an EM score of 96.86% which indicates its effectiveness in624

mask detection. As a consequence, the corrector network’s performance is significantly improved. The625

purificator’s efficacy improves the corrector’s EM score by 10.55% and helps to outperform previous626

methods by a convincing margin. It achieves an EM score of 94.78% in correction generation, whereas627

it was 84.23% and 90.44% in corrector with and without detector model, respectively.628

5.6.3 Effect of Masked Characters629

Figure 4 depicts how the model converges relatively faster due to precisely masking the erroneous630

characters. The loss of the Detector+Purificator+Corrector is significantly reduced between 5 and631

15 epochs, whilst other variants exhibited gradual decrement. It signifies the method’s aptitude to632

generate accurate correction in a short time frame. It takes approximately half of the time of the633

variant named corrector to reach the lowest value of the loss. Likewise, it hits the lowest point three634

times faster than the remaining detector+corrector variant.635
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Figure 4: Effect of purified masked characters from the purificator network
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5.7 Drawbacks of DPCSpell636

Even though our proposed DPCSpell gives promising performance by outperforming several methods,637

it suffers from two minor issues. Firstly, it has a large parameter size as compared to other SEC638

methods. Each of the transformer-based detector, purificator, and corrector networks has 1,696,197639

trainable parameters. As a result, it contains nearly 150% and 300% more trainable parameters than640

the DCSpell and DTransformer, respectively. Consequently, it requires almost twice and thrice as long641

as DCSpell[38] and DTransformer[45] to make a correction. Secondly, it is heavily data-dependent to642

produce a credible result. The experimental findings in table 8 delineate how our method begins to643

show its efficacy for a larger corpus. However, in the case of immense parameter size, the advance in644

technology helps overcome the hurdles in training a model with a parameter size of approximately 5M,645

which is not even end-to-end. Regarding the data dependencies, we propose a method for developing646

a large-scale corpus that is effective in resolving the data dependency issue.647

6 Conclusion648

The spelling error rectification task becomes challenging due to the visual and phonological features649

of characters which give ambiguous information about the context and essentially mislead the model.650

To solve the problem, we proposed a detector-purificator-corrector framework based on denoising651

transformers that detects whether a letter is appropriate or not before correcting it. The detector652

network is used to identify the erroneous characters and mask them, while the purificator further653

purifies the masked output. The corrector module is responsible for correction generation. We divided654

the SEC task into three sub-tasks, which significantly enhanced overall performance. Consequently, it655

became the new state-of-the-art method for Bangla SEC. In addition, we presented a new approach656

for creating a large-scale parallel corpus for SEC of any left-to-right scripted language which in turn657

resolved the resource limitation issue. A large-scale parallel corpus for Bangla SEC is developed658

using our method and made publicly available, making Bangla a resourceful language for the task.659

Furthermore, we observed that many existing methods rely on private corpora and withhold their codes,660

hindering reproducibility. So, we have made all our codes publicly available, fostering a reproducible661

baseline for the task. In the future, we will make our method less data-dependent with the help of662

meta-learning.663
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