IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received September 19, 2021, accepted October 7, 2021, date of publication October 13, 2021, date of current version October 21, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3119627

Development of Bangla Spell and Grammar
Checkers: Resource Creation and Evaluation

NAHID HOSSAIN~, SALEKUL ISLAM "™, (Senior Member, IEEE),

AND MOHAMMAD NURUL HUDA

Computer Science and Engineering Department, United International University, Dhaka 1212, Bangladesh

Corresponding author: Salekul Islam (salekul @cse.uiu.ac.bd)

ABSTRACT A spell and grammar checker is profoundly essential for diverse publications especially for
Bangla language in particular as it is spoken by millions of native speakers around the world. Considering
the lack of research efforts, we demonstrate the development of a comprehensive Bangla spell and grammar
checker with necessary resources. At first, a full-fledged and generalised Bangla monolingual corpus
comprising over 100 million words has been built by scraping reputed, diversified online sources and
then an extensive Bangla lexicon consisting of over 1 million unique words has been extracted from that
corpus. Based on these corpus and lexicon, we have developed a combined spell and grammar checker
application that simultaneously detects distinct spelling and grammatical mistakes and provides appropriate
suggestions for both as well. The spell checker uses the Double Metaphone algorithm and Edit distance
based on the distributed lexicons and numerical suffix dataset to detect all types of Bangla spelling mistakes
with an accuracy rate of 97.21% individually. The grammar checker detects errors based on language model
probability i.e. combination of bigram and trigram, and generates suggestions based on the Cosine similarity
measure with the accuracy rate of 94.29% individually. The datasets and codes used in this work are freely

available at https://git.io/JzJ4w.

INDEX TERMS Bangla, corpus, grammar checker, lexicon, spell checker.

I. INTRODUCTION

Bangla is a language spoken by roughly 250 million native
speakers around the world, mainly in Bangladesh and some
regions of India [1]. Every day hundreds of books, magazines,
and newspapers are being published in Bangla. In order to
inscribe a high-quality article, an article must be free from
spelling and grammatical errors. Spell checking is essential
to ensure the quality of content and readability for readers as
well. Moreover, an online article free from spelling mistakes
gives better crawl-ability and indexing for search engines.
Detecting erroneous words is not that difficult for a spell
checker. However, suggesting the appropriate word(s) for an
erroneous word is challenging for a spell checker, especially
in non-Latin languages such as Bangla. Finding grammatical
mistakes is also essential while checking for spelling mis-
takes. Suggesting an appropriate solution for a grammatical
mistake is the most difficult challenge. Moreover, the combi-
nation of both spell and grammar checkers is essential for a
fruitful Bangla article. Currently, available spell and grammar

The associate editor coordinating the review of this manuscript and

approving it for publication was Sun-Yuan Hsieh

VOLUME 9, 2021

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

checkers in Bangla are not prolific due to the very trivial
dataset and primeval way of processing data.

In order to develop a functional spell and grammar checker,
we need to have a comprehensive monolingual corpus and
lexicon. Although extensive researches have been carried out
focusing on spell and grammar checkers in English, very
few researches have been found in Bangla. By studying
the available Bangla corpus, lexicon, spell, and grammar
checker, we have identified several limitations in the cur-
rent approaches, including scarcity of balanced and extensive
corpus, substantial lexicon, and efficient spell and grammar
checker. A text corpus is a large and structured set of texts [2].
The corpus-based method of information processing gives
language researchers the advantage of not relying on native
speakers’ or on their perceptions. There are incessant research
efforts to practice corpus-based methods as the leading part
of any language processing system. Since our proposed gram-
mar checker is data-driven, we need to build a large, balanced,
and well-defined Bangla monolingual corpus to make our
grammar checker accurate. Later, we have extracted the cor-
pus to construct the Bangla monolingual lexicon to enhance
the spell checker’s performance.

141079

https://orcid.org/0000-0002-1325-8209
https://orcid.org/0000-0002-7262-0060
https://orcid.org/0000-0003-4746-3179

IEEE Access

N. Hossain et al.: Development of Bangla Spell and Grammar Checkers: Resource Creation and Evaluation

Everyday, hundreds of Bangla articles are being published
through online and printed newspapers. Besides, thousands
of Bangla books are being published every year. In social
media such as Facebook and Twitter, millions of users are
communicating with each other in Bangla every day. More-
over, there are many government and non-government places
where documents are being written in Bangla. All these
above-mentioned places will be benefited if there exists any
functional spell and grammar checker by improving the qual-
ity of Bangla articles significantly. Moreover, a reliable, bal-
anced, and large corpus is the root of many statistical-based
linguistics research. This motivates us to develop a compre-
hensive spell and grammar checker along with a corpus and
a lexicon for the Bangla language.

The notable research challenge we face while working
on the Bangla language is the linguistic complexities of the
language. Bangla has 11 vowels, 30 consonants, 10 diacritic
forms of vowels, and a distinctive horizontal line above each
alphabet. Moreover, it creates multiple other conjoint char-
acters by joining two to three base characters. It has pairs of
alphabets that look and pronounce nearly the same. Further-
more, word order in Bangla sentences affects the comprehen-
sion of a sentence in many cases. Unlike other well-studied
languages, Bangla language has many distinctive linguistic
features in word formations, sentence structures and unique
word usages that make the language challenging to work
with. We have tackled the challenge by in-depth analysis of
the language, finding out appropriate solutions, and using
different statistical approaches. Note that enormous support-
ing data helps to understand the complex linguistic features
without having in-depth knowledge of the language in many
cases.

To address the aforementioned research gaps, our objec-
tives are summarised as follows. First, due to the lack of a
sufficiently large corpus and a lexicon in Bangla for statistical
linguistic analysis, we plan to develop a corpus and a lexicon.
Second, to develop a reliable and accurate Bangla spell and
grammar checker based on the corpus and lexicon we will
develop. Finally, to publish our datasets (i.e., the corpus and
lexicon) online to make available for the future researchers.

The significant contributions of our work are summarised
in the following:

o Developing the largest (to the best of our knowledge)
Bangla monolingual balanced corpus and lexicon con-
sist of over 100 million words and one million words,
respectively.

o Developing a comprehensive Bangla spell checker
approach considering all types of Bangla spelling errors.
The spell checker also provides appropriate suggestions
for a misspelt word based on different criteria with
the help of encoding values from Double Metaphone
Algorithm [3], and Edit Distance [4] of a lexeme.

o Developing a full-fledged and generalised Bangla
grammar checker approach considering various Bangla
grammatical mistakes. The grammar checker provides
appropriate suggestions to correct the mistake based on

141080

language model probability i.e. combination of bigram
and trigram, and text similarity approach i.e. Cosine
similarity measure.

o Developing a combined spell and grammar checker
application that detects errors and shows suggestions
on both spelling and grammatical mistakes in Bangla
sentences unlike all previous approaches. Moreover,
the achieved accuracy is higher than any previous
approaches for both spell and grammar checkers.

The rest of the paper is organised as follows: section II
describes the related works and identifies the limitations of
previous approaches. The architecture of the proposed sys-
tem has been briefly explained and described with a process
diagram in section III. Section IV presents the step-by-step
development process of the corpus and demonstrates the
procedure of the extraction and development of the lexicon.
Although we have developed a combined solution for spell
and grammar checkers, the details of these two are presented
in different sections for simplicity and better understanding.
Section V describes the proposed spell checker, including the
algorithm. The next section presents the proposed grammar
checker. Section VII demonstrates the experimental results
and the analysis of the results as well. Finally, section VIII
concludes the paper by mentioning future work.

Il. BACKGROUND

This section mentions the related works of three inter-
connected but distinct segments of our proposed system:
corpus and lexicon, spell checker, and grammar checker.

A. CORPUS AND LEXICON

A corpus is a collection of written texts, especially the entire
works of a particular author or writing body on a particular
subject. On the other hand, a lexicon is a vocabulary, a col-
lection of words, or a complete set of meaningful units in
a language. Therefore, a lexicon is generally built from a
generously large corpus.

Central Institute of Indian Languages (CIIL) [5] first intro-
duced a Bengali corpus along with a corpus of other nine
Indian languages in 2001. It contains 3 million Bangla words,
which is not sufficient for today’s large-scale applications.
In 2006, a corpus named ‘Prothom-Alo’ [6] had been devel-
oped by collecting data from a leading Bangladeshi daily
newspaper, named ‘Prothom-Alo’. The corpus contains more
than 18 million words. Although the size of the corpus is
moderate, the corpus is not suitable for real-life applications
since it collected texts from a single source that may pro-
vide imbalanced or biased data. In 2014, Mumin et al. [2]
proposed a Bangla monolingual corpus, named ‘SUMono’,
which contains 27 million words collected from various
sources. At present, this is the largest Bangla monolingual
corpus. Khan [7] proposed a Bangla monolingual corpus,
named ‘BDNCO1’ in 2017, which contains 12 million words.
The author proposed the same monolingual corpus earlier
in 2012 with 11 million words [8]. In 2020, Ahmed et al. [9]
illustrated the building technique of a Bangla speech corpus

VOLUME 9, 2021

N. Hossain et al.: Development of Bangla Spell and Grammar Checkers: Resource Creation and Evaluation

IEEE Access

from publicly available audio. In addition to that, they pro-
posed a text corpus for their speech corpus with 10 million
sentences. However, the authors neither mentioned how and
from where they collected these data nor how they filtered
and processed the text corpus. On the other hand, there are
some other small-sized corpora available for different goals
in Bangla. In 2012, Goldhahn et al. [10] proposed a col-
lection of monolingual corpora for 200 languages, including
Bangla, with some Bengali articles crawled from the internet.
Biswas et al. [11] proposed a handwritten character dataset
in 2017. Later in 2018, Alam and Islam [12] developed a
dataset containing different Bangla articles for their article
classification approach.

Table 1 shows the comparison among the available Bangla
monolingual corpora. It shows that except our proposed cor-
pus NHMonoO1, which consists of more than 100 million
words, the sizes of all other corpora are not sufficient for
comprehensive statistical linguistics research.

TABLE 1. Comparison of different Bangla monolingual text corpora.

Corpus Name Total Words

NHMono01(Proposed) 100,142,522
SuMono 27,118,025
Prothom-Alo 18,100,378
BDNCO1 11,362,524
CIIL 3,044,573

On the other hand, to the best of our knowledge, no lexicon
is available for the Bangla language at this moment, and
hence, the lexicon developed in this study is the first of its
kind.

B. SPELL CHECKER
A spell checker is a computer program that checks the
spelling of words in a text, typically by comparing with a
stored list of words.

Haque and Kaykobad [13] proposed the Bangla phonetic
encoding for spell checker based on the Soundex algorithm
in 2002. They numbered each group of phonetically similar
consonant characters with 1 to 9 and vowels with 0. Note
that this Bangla Soundex table exhibits several imperfec-
tions, such as poor encoding of similar characters. Later
in 2004, Uzzaman and Khan [14] projected a phonetic encod-
ing based on the Soundex algorithm, which abrogated several
limitations of Haque and Kaykobad’s encoding. Uzzaman
and Khan [3] proposed another spell checker based on the
Double Metaphone Algorithm (DMA) in 2005, where the
authors proposed a Double Metaphone encoding technique
that improved the spell checker significantly. Later in 2006,
the authors proposed a spell checker based on their previ-
ous approach, claiming a better suggestion for the misspelt
words [15]. In 2016, Ahmed et al. [16] used the Edit Distance
and n-gram models to post-process their Optical Character
Recognition (OCR) output by omitting the misspelt words.

VOLUME 9, 2021

Mandal and Hossain [17] proposed a clustering-based Bangla
spell checker in 2017 that can handle only typographic and
phonetic errors. They have used 2,450 misspelt words as their
dataset. In 2018, Sooraj et al. [18] proposed a spell checker
for the Malayalam language based on a neural network. Later
in 2019, Mittra et al. [19] developed a Bangla spell check-
ing technique to facilitate error correction in the text entry
environment. They used 50,000 n-gram sentences to detect
and correct the errors. Hasan et al. [20] proposed a solu-
tion for Bangla Speech to Text(STT) conversion approach
in 2020. They also integrated a spell corrector to improve
accuracy for the proposed STT system. It can handle partic-
ularly typographic errors. The authors did not mention any
specific description for the spell checker. Recently in 2021,
Ahamed et al. [21] proposed a spell corrector for the Bangla
language using Norvig’s algorithm and Jaro-Winkler distance
which can handle specifically typographic errors. In the same
year, Noshin Jahan et al. [22] proposed a hybrid model for
Bangla word error detection correct that is based on bidirec-
tional LSTM and bigram. They developed four small-sized
corpora to train and test their approach and provides an
accuracy rate of 82.86%.

C. GRAMMAR CHECKER

A grammar checker is a program or part of a program that
finds out any possible grammatical mistakes from a given
text. The text might be a single sentence or a collection of
several sentences.

In 2006, Alam et al. [23] presented an n-gram-based sta-
tistical grammar checker for both Bangla and English. The
system assigns tags to each word of a sentence using a Part-
Of-Speech (POS) tagger. They used a dataset that consists
of only 5,000 words and gained an accuracy rate of 53.7%.
In 2012, Hasan et al. [24] had projected a Context-Free
Grammar (CFG) for Bangla language and hence based on
that grammar, they developed a parse tree with 225 sen-
tences. According to the authors, this parser can be applied
to the Bangla grammar checker to parse different Bangla
sentences. In the same year, Islam et al. [25] proposed an
approach that recognises correct Bangla sentences and rejects
incorrect ones based on the Head-Driven Phrase Structure
Grammar (HPSG). Rahman er al. [26] proposed an inves-
tigative design-based statistical approach based on n-gram
for determining Bangla sentence validity. In the same year,
Rabbi et al. [27] described a parsing technique for Bangla
grammar recognition. It takes the CFG of the Bangla lan-
guage as input and constructs a parser table from the gram-
mar. In 2017, Rahman et al. [28] designed a Bangla parser
using the Non-Deterministic Push-down Automata (NPDA).
The NPDA parser takes a CFG of Bangla Language for pre-
processing, and the parser can parse all forms of Bangla sen-
tences. Islam et al. [29] proposed a Machine Learning-based
Bangla sentence correction approach in 2018 that uses the
sequence to sequence learning, contains a dataset of 250K
sentences, and shows an accuracy rate of 79%. In 2020,
Shetu et al. [30] proposed a grammar checker that

141081

IEEE Access

N. Hossain et al.: Development of Bangla Spell and Grammar Checkers: Resource Creation and Evaluation

handles a specific problem in Bangla article called Guru-
chondali Dosh, which means mixing of two Bangla writing
styles, i.e., Sadhu and Chalito, and achieved an accuracy rate
of 74.5%. Recently in 2021, Saha Prapty ef al. [31] developed
a rule-based parsing for Bangla grammar pattern detection.
They developed a domain-specific CFG based on the rules of
Bangla grammar and applied it to that domain.

D. LIMITATIONS OF PREVIOUS APPROACHES

In the following we have summarised the limitations of the
previous approaches and also mentioned how we have han-
dled those in our work:

o Small corpus size and manual corpus building: All
the previous Bangla corpus creation approaches [5]-[12]
suffer from small corpus size (mentioned in Table 1) and
thus, are not suitable for sophisticated statistics-based
linguistics research. Moreover, these approaches take
long time in corpus creation due to manual techniques
including copy-and-paste or typing printed documents.
Typing articles may also introduce typographic errors
in the corpus. We solve these limitations by introducing
automatic crawling and scrapping in a controlled manner
that leads us to collect large, error-free data within a
short span of time.

o Limited error detection and suggestions by spell
checker: The previous spell checkers including the
recent ones ([20] and [21]) can detect only typographic
errors. On the contrary, [22] can detect only real-word
errors. Note that our approach can detect all types of
known errors in Bangla spelling. For better suggestions
of the frequent spelling mistakes, phonetic encoding
algorithms such as Double Metaphone are very effective.
However, only [3], [13] and [14] use phonetic encoding.
Our approach uses the Double Metaphone algorithm to
offer better suggestions for errors including errors that
occur due to phonetically similar Bangla alphabets.

« Small lexicon size: In dictionary loop-up approaches
lexicon size is another factor behind the performance
of the system. However, the sizes of the lexicon in the
previous approaches are comparably not suitable for
accurate results and suggestions. Our spell checker uses
a large lexicon extracted from our corpus that helps
to detect diversified spelling mistakes and to present
accurate suggestions for erroneous words. Another flaw
in the previous systems except [20] is that they tested the
systems using test datasets consisting of single words
instead of complete sentences that might not reflect
real-life scenarios.

o Grammar checker without suggestions: All the pre-
vious Bangla grammar checkers except [26] are based
on small corpora which is the leading reason behind
the low accuracy of most of the previous grammar
checkers. Similarly, these approaches detect grammati-
cal mistakes without suggesting any solution for the mis-
takes. The proposed grammar checker detects mistakes
and suggests appropriate solutions for the mistakes.

141082

Examples are shown in Table 22 which are based on the
proposed corpus.

« Combined spell and grammar checker solution: The
previous approaches focus on the partial problem and
therefore, proposed solutions either for Bangla spell
checker or for Bangla grammar checker but not together.
However, a high-quality article should be free from both
spelling and grammatical errors. On the other hand,
our proposed system detects both types of errors and
provides suggestions for both as well.

Ill. PROPOSED WORK

This section presents the abstract view of the proposed work.
Figure 1 shows the architectural diagram that demonstrates
the abstract view of the proposed work and also describes how
each components are connected to each other.

In the first phase, we develop a balanced corpus with
sufficiently large size for statistical use. We are very cautious
in each step from text domain selection to quality assurance.
Next, we develop a lexicon by extracting unique words from
the corpus. The lexicon contains both root words as well as
words with bound morphemes.

We develop the spell and grammar checker that can work
simultaneously. The spell checker removes all the punctua-
tion’s from a given text, splits the text into separate lexemes
and processes each lexeme with the help of the numerical
suffix dataset (for Bangla numbers with suffixes), and the
lexicon (for all other lexemes). To provide an appropriate
suggestion for an error, it uses edit distance between Dou-
ble Metaphone Values (DMV) (generated by the Bangla
character phonetic encoding through double metaphone
algorithm) of the erroneous lexeme and the pre-calculated
DMV values of each lexeme in the lexicon. This gives us
a temporary list of suggestion lexemes, from which the
top five lexemes based on several criteria are selected as
suggestions.

On the other hand, the grammar checker splits the given
text into sentences. For each sentence, the grammar checker
first applies a basic check that includes redundant or duplicate
lexeme check, additional whitespaces check, and punctua-
tion error check (extra, missing or misplaced). The grammar
checker then generates language model probabilities based
on bigram or trigram counts depending on the lexeme count
in the sentence. It decides the correctness of a particular sen-
tence based on a threshold of the language model probability.
Then it applies the Cosine Similarity measure between the
sentence and the corpus, stores the scores temporarily, and
displays the two closest results as tentative grammatically
correct sentences.

In the following sections, we describe each component of
this proposed system in details.

IV. DEVELOPMENT OF DATASETS: CORPUS AND
LEXICON

Our datasets are comprised of the corpus and the lexicon we
have developed. This section explains different steps such

VOLUME 9, 2021

N. Hossain et al.: Development of Bangla Spell and Grammar Checkers: Resource Creation and Evaluation

IEEE Access

P

'L : Input Bangla Text)ﬁ

Corpus Creation

Lexicon Creation

Text Domain
‘ Selection ‘ ‘ Read whole corpus ‘
(soeamasowes | ||| i

R

For each source

For each lexeme

Spell Checker

|F!emove punctuations
and split lexemes

Grammar Checker

| Split sentences |

For each lexeme

| For each sentence

yes foreign-word or nimber or
Bangla number without TU
T _suffix_ -
mark it and avoid | no yes
. Bangla number with suffx
>

processing

V.

yes coptains redundant lexEmes, no

f _ additional whitespaces, —l

~punciuation errors-
| mark it as incorrect and generate lexeme count ‘

Crawling and | - yes geﬂe,a'te hash my K and decide and display display suggestion from the sentence
N = no i e
Scrapping LB fexeme loop-up in Lexicon -~ | SUggestion based on —
I K retumns positive Bangla numeric suffix Find Language Model
0 ~ - dataset ‘l Probability(LMP) based on Bigram
Processing and mark it s correct | A '| or Trigram counts decided with
Cleaning Text Data lexeme & proceed | @ lexeme counts
_ For each lexeme to next lexeme 5 | Find DMV of the erroneous lexeme
0 3 ’ :
Generale lexeme § Generate a suggestion list based on es _ LMP is greater thama, _no
| frequency from | — g Edit Distance of DMV values from : threshold g
‘ Compilation ‘ ﬂ”ﬂ: E I mark the sentence as
“eMmove lexemes 2 | Generate Rank and display top 5 of | correct and proceed ~ Find Cosine Similarity
I ";'m I‘{”w frequel_'rlrcy # | the lexemes from the suggestion list lonextsentence | | o | Measure(CSM) between the
FETL T EE |] » 2 sentence and corpus
‘ Quality Assurance ‘ —mmﬁm— D =
LY, = | Store temporary results with
+ -] CS8M scores
f Lexicon MNumerical E TR T =T
2| [Display two closest sentences
Corpus Wan Sat of Smaller Lexicon Files with Frim ZaEE z | Lol e
Lexicon [Lexicon Files based - Double Metaphone correct sentences
| File String Length Values(DMV)
S
9]
» Qutput Bangla text with < I
suggestions for errors (if any)

FIGURE 1. Architecture of the proposed work.

TABLE 2. Domains of corpus.

B. SELECTING SOURCES

Each domain consists of numerous sources to collect data

SL Domain from the Internet. However, Table 3 shows the list of sources
1 Newspapers chosen to collect data based on our careful considerations
. . and the reputation of different publicly available sources to
2 Science Magazines .)
increase the representativeness of the corpus.
3 Personal Blogs
4 Textbooks i
TABLE 3. Domain and sources of corpus.
5 Juvenile Literature
6 History Domain Sources URL
7 Poetry Prothom Alo www.prothomalo.com
Newspapers Bangla News 24 www.banglanews24.com
wspap Kaler Kantho www.kalerkantho.com
BD News 24 bangla.bdnews24.com
Tech Tunes www.techtunes.co

as planning, analysis, design, and creation of corpus and
lexicon development. Python 3.6 is the core language of these
experiments with the scikit-learn library [32].

A. TEXT DOMAIN SELECTION
Although a corpus-based method is a good technique for
language processing, it has some limitations as well. When
a system works based on a particular corpus, it behaves
according to that corpus. Therefore, if the corpus is not
balanced, the performance degrades. When a corpus con-
tains data from all possible domains, it shows balanced
behaviour. Therefore, while collecting input data, we encom-
pass the major domains that generate Bangla texts. The
source domains that we have included are mentioned

in Table 2.

VOLUME 9, 2021

Science Magazines .
& C News Voice

WWW.cnewsvoice.com

Personal Blogs Ei);glewhere in www.somewhereinblog.net
Sachalayatan www.sachalayatan.com
Textbooks National Curricu- www.nctb.gov.bd
lum and Textbook
Board
Juvenile Litera- Pandulipi www.pandulipi.net
ture
History Banglapedia bn.banglapedia.org
Poetry Bangla Kobita www.bangla-kobita.com

C. CRAWLING AND SCRAPING

Our approach for collecting text data is to crawl and scrape
sources online. Crawling and scraping is the most advanced

141083

IEEE Access

N. Hossain et al.: Development of Bangla Spell and Grammar Checkers: Resource Creation and Evaluation

and fastest way to collect data. Using a spider bot to crawl
and scrape is the automated way to accumulate informa-
tion or text from a website. Python’s Scrapy framework!
is used to build the spider bots. Scrapy is an open-source
framework for extracting data from any website. Since each
source website has a different internal structure than others,
we have to design and implement customised spider bot for
individual sources by modifying the spider program accord-
ingly. We have used a high-performance machine (hardware
specification is given in subsection VII-B) to scrape and store
data non-stop. The minutiae code snippet below illustrates
the core segment of the spider that has been used to crawl
and scrape data from the first source of the first domain of
Table 3.

import scrapy
class SpiderProthomAloSpider (scrapy.Spider

name = ’SpiderProthomAlo’
allowed__domains = [’www.prothomalo.com’ |
start_urls = [’http://www. prothomalo.com

/archive /2020—07—24’]
def parse(self, response):
item_ link = response.css(’a.
link_overlay :: attr (href)’).
extract ()
file_object = open(”scrapped_data\

__prothomalo.txt”, ”a”, encoding=’
utf—8—sig’)

for i in range(0, len(item link)):
item_ link_ text = response.css(’p

iitext) .extract ()
file_object.write(item_link text|
1] + ”\H”)
next_page = item_link[1i]
if next_page is not None:
next_page = response.
urljoin (next_ page)
yield scrapy.Request(
next_page, callback=self.
parse)

In this particular spider, in the allowed_domains
variable, we put the URL of the target website (in this
case, ‘www.prothomalo.com’). Then, we mention the URL
to start scraping in start_urls variable. The spider
automatically crawls all the articles available from the date
mentioned in the start_urls to the last available article/
page. Inside a loop, we extract all the text contents only
contained in the main body paragraph(s) from each page
and append the texts into a Unicode text file (in this case
‘scrapped_data_prothomalo’). Each spider uses the
HTML stripping technique to avoid all other unnecessary
texts, such as the texts in titles, menus, advertisements, and
any text in the header and footer. We crawl, scrape, and store
Bangla texts from all other source websites in the same way
with slight modification in the code of the spiders.

1 https://scrapy.org/

141084

D. PROCESSING AND CLEANING OF TEXT DATA

We have collected roughly 4.0 gigabytes of plain Bangla
texts in separate Unicode text files for each source. Although
the spiders have been specifically designed to collect only
plain Bangla body text from articles/pages, sometimes they
have collected very few HTML tags, a lot of blank spaces
and newlines, and most importantly, some English sentences.
Therefore, in order to have pure Bangla plain text, each
individual text file has been gone through the following steps:

o Apply further HTML stripping to remove any left-out
HTML tags in the texts.

« Remove all blank spaces and newlines from each file.

« Remove additional whitespaces from each sentence.

« Remove any English words, numbers, or sentences from
each file. English words have been identified based on
Unicode code point.”

« Remove boilerplate texts.

« Remove duplicate sentences. In some sources, the exact
same sentences can be repeated multiple times, espe-
cially in newspapers. To avoid negative effects in sta-
tistical analysis, they are discarded.

Nearly 2.0 gigabytes of pure Bangla plain text are left after

cleaning and removing almost 2.0 gigabytes of useless data.
Table 4 shows some samples of cleaning data.

E. COMPILATION AND TIME PERIOD

We have compiled all the individual text files into a single text
file of nearly 2.0 gigabytes. During the compilation process,
we have further removed duplicate sentences arrived from
different sources. This happened especially in newspapers
since reports of a specific incident appear almost the same
in different newspapers. We have then stored both individual
text files and the single compiled file in CSV and TXT for-
mats. As a result of the continuous effort of seven months,
we have developed the corpus and named it ‘NHMonoO1’.
The final version of the corpus consists of over 100 million
words, 100,142,522 words, to be precise.

Total corpus creation time can be divided into two main
phases. The first phase consists of selecting domains and
sources, development of spiders, crawling and scraping.
The second phase consists of post-processing, such as clean-
ing, removing inappropriate data, sorting data, compiling,
generating statistics, and quality assurance. It took roughly
seven months to complete the whole task. The corpus still
needs continuous attention for any minor revisions in the
corpus.

F. QUALITY ASSURANCE

Quality assurance is a major challenge as hundreds of corpora
of up to millions of sentences can hardly be evaluated by
hand [10], [33]. Thus, it must be a goal to do as little manual
evaluation as possible. General features of natural language
texts, such as empirical language laws (e.g., Zipf’s law [34])
and behavior of function words to measure homogeneity of

2https ://[www.unicode.org/charts/

VOLUME 9, 2021

N. Hossain et al.: Development of Bangla Spell and Grammar Checkers: Resource Creation and Evaluation

IEEE Access

TABLE 4. Samples of cleaning data.

Sample Raw Text Input

Output Text After Cleaning

Removal Procedure

B A T A A R @ T
 @, 173, e 1 qre, v wreet
BI098 QAT | < /b> BICH (1o} FCS
A Arefs fFg AW This recipe is also

available in English.

B ATR S A A @I IR @ T
I, GofF, [t feedr s, B @rest 5eres
2P | B @1 FECS 2AIca el fog TAm |

HTML tag removal, Additional whites-
paces removal, English sentence removal

ol T R0 MO T AT |
AN 8 KR SEREBISIAS]
2 AT FAE 1

ol MG T I T AT | AT S
FBe | ATTSITS olf A FAE A1

Additional mewline removal, Additional

whitespaces removal

wiore W S @ difre s T @8ee
IR CFCG ORI G G | q9a e wifaee
TIRE AT [T 579 I SR | @S

wdere WM e (@ [Mdifae e 9o g
TR (R O W @i | 9aees e ot
TWEEA T [BAL 77 FE bz |

Duplicate sentences remowal, Boilerplate
texts removal

W 55 e Fifre e e e Sae oRE
O GEE @I ¥g © AN A AAME 3
AFTIF: NfoSq

the corpus are the possible indicators of the quality of a
corpus.

1) ZIPF'S LAW

For any corpus, the first and simplest query is a list of
words, which can be organised by the frequency order. The
frequencies follow Zipf’s Law, which states that for a corpus
of a natural language, the frequency of any word is inversely
proportional to its rank. It is not known why Zipf’s law holds
for most of the languages. The Zipf’s curve appears approx-
imately linear on the log-log plot for most of the standard
corpora. Zipf’s law can be represented through the following
approximation of the rank-frequency relationship:

1if=c ey

where r is the rank of a word-type, f is the frequency of
occurrence of the word-type, and c is a constant. When stated
algebraically, Zipf’s law is usually given in the form of equa-
tion 1, but the law is probably most familiar in a graphical
representation of the mathematically equivalent form:

log(r) + log(f) = log(c) @
Equation 2 can also be written as follows:
a(log(r)) + log(f) = log(c) 3

where on a log-log scale the plotted line will be a straight line
with a negative slope « close to —1.

Figure 2 shows the Zipf’s curve for our corpus NHMono0Ol1,
and it is almost linear. The analysis of the graph shows that
the term distribution in the whole dataset fits Zipf’s law
comfortably.

2) DISTRIBUTION OF FUNCTION WORDS

Function words have ambiguous meaning and express gram-
matical relationships among other words within a sentence.
Function words are not informative unlike content words in a
document. However, function words can be used to assess the

VOLUME 9, 2021

Logi{Frequency)
IS

o 1 2 3 4 5 [
Log({Rank)

FIGURE 2. Plotting of word frequencies against its ranks to observe the
Zipf's Law.

quality of a corpus. In a balanced corpus, the function words
will tend to distribute more homogeneously than content
words [2], [35].

We have distributed the corpus into three groups to inves-
tigate the distribution of function words in the corpus. Each
group contains data from two or more domains. The groups
are as follows:

o Group-1: Newspapers, Science Magazines

o Group-2: Personal Blogs, Textbooks

o Group-3: Juvenile Literature, History, Poetry

Table 5 shows the 10 most frequent function words from
each group and their percentage of occurrences. The table
demonstrates that the most frequent function words are nearly
the same words in all 3 groups with a slight difference in the
position or rank of the words. The homogeneous distribution
of these frequent function words confirms that the proposed
corpus is well-balanced.

On the other hand, as mentioned in subsection 1V-B,
we have selected very well-known sources with high rep-
utations in Bangladesh. All the sources except sources of
personal blogs domain are from reputed organisations and
thus can be considered reliable sources of error-free espe-
cially spelling mistakes-free source of texts. Moreover, since
we have used the automatic crawling and scraping technique

141085

IEEE Access

N. Hossain et al.: Development of Bangla Spell and Grammar Checkers: Resource Creation and Evaluation

TABLE 5. Distribution of the function words in the corpus.

TABLE 6. Percentage of occurrence of each letter in the corpus.

Group-1 Group-2 Group-3
Word % Word % Word %
s 1.110 i 1.203 B 1.198
W 0.993 B 1.121 @ 1.039
Q 0.923 @ 1.031 g 0.967
QAT 0.834 AT 0.924 UEY 0.912
Bl 0.811 Bl 0.903 @2 0.867
N 0.701 Gy 0.867 Q 0.802
UES 0.692 ey 0.817 @ 0.767
= 0.667 e 0.754 QAT 0.699
Sic 0.632 k| 0.698 k| 0.683
fefy 0.621 @ 0.634 EX 0.607

instead of manually typing each word, this automatically
gives us the advantage of not manually checking each word
for spelling mistakes which could be miserable for such
an enormous corpus. However, with our volunteers’ help,
we manually checked for any inconsistencies from the very
beginning of the corpus creation. We are preparing for formal
accreditation of the corpus from the Bangla Academy.’

G. CORPUS STATISTICS

Before going further with this corpus, we have found different
statistical values of it. The percentage of occurrence of each
letter in the corpus is demonstrated in Table 6. On the other
hand, Table 7 demonstrates the percentage of occurrence
of the initial letter of words in the corpus. Finally, the top
40 frequent words in our corpus have been shown in Table 8.

H. BUILDING THE LEXICON

A lexicon is an inventory of lexemes. Lexicon also contains
bound morphemes, compound words, and idiomatic expres-
sions. On the other hand, a standard dictionary contains only
root words, usually excluding bound morphemes [36]. Hence,
a lexicon is a core part of a spell checker. We have created
our lexicon by extracting words from our monolingual text
corpus, NHMonoO1. The procedure of creating and filtering
our lexicon is explained in Algorithm 1.

At first, we filter out all punctuation from the corpus. Then,
we remove the redundant lexemes and keeps only the unique
lexemes in the lexicon file. Then we sort the whole lexicon
alphabetically to increase the readability. Finally, the lexicon
goes through a final lexeme filter.

Our corpus contains many garbage, informal words of dif-
ferent dialects, and names of persons, places, and objects. Our
lexicon must not consist of these informal, garbage words.
However, separating these words from actual formal words is
a challenging task. We have removed these unwanted words
based on a semi-automatic approach. We have removed these

3Bamgla Academy is an autonomous institution funded by Bangladesh
government to promote and foster the Bangla language, literature, and
culture.

141086

letter % % % %
letter letter letter

ol 10.557 ¥ 1.705 0672 g 0.15
G 8.768 2 1.505 ¥ 0.668 @ 0.104
k) 8384 @ 1411 © 0.625 & 0.07
613 % 138 ©@ 0.559 ¢ 0.063
o 5477 1.278 9 0.551 T 0.045
T 5.421 « 1226 © 0.448 @ 0.041
3T 437 o 1.204 §© 0.428 % 0.013
3 3.705 F 1.089 2 0.417 8 0.007
© 3.536 ® 1.088 @ 0.383 ¥ 0.006
w 2952 ¥ 1.022 ¥ 0.337 @ 0.006
i 2,925 0.986 < 0.281 © 0.003
ki 2.866 @ 0974 T 0.238 T 0.001
A 2431 0928 9 0.211 8 0.001
% 2214 © 0.887 & 0.183

7 2.152 8 0.794 9 0.168

3 1.733 « 0.705 o 0.157

TABLE 7. Percentage of occurrence of initial letter of words in the corpus.

letter % % % %
letter letter letter

i 9024 W 3.104 9 132 A 0.094

K 8898 & 3.098 ® 1.164 % 0.048

7 849 A 2704 A 1.087 @ 0.032

A 7.931 o 2448 4 0.979 ¥ 0.028

o 5.441 2405 ® 0.944 ¥ 0.020

il 5.291 8 2059 & 0.808 © 0.015

E3 4873 % 2.027 ¥ 0.654 9 0.003

Q 4.863 1 1.798 4 0.545 fo 0.002

Rl 4685 © 1571 © 0.429

w 4.496 © 1.362 T 0.24

© 358 ¥ 1.348 3 0.104

words based on the frequency of each word and then have
manually examined certain words. Since there is no standard
threshold available as reference, we have manually studied
NHMono01, and we have observed that if a word’s frequency
is less than 10 in NHMono0Ol1, it is usually an unwanted,
garbage word such as a name of a person, place, or object.
Therefore, we remove it immediately. However, if a word’s
frequency is between 10 and 50, it is difficult to decide by the
machine since, between this range, we have observed a com-
bination of both actual and garbage words. Thus, we check
those words manually, and only correct words are included
in the final lexicon file. If the frequency of a word is greater
than 50, then we consider it as a correct word and store it

VOLUME 9, 2021

N. Hossain et al.: Development of Bangla Spell and Grammar Checkers: Resource Creation and Evaluation

IEEE Access

TABLE 8. The top 40 frequent words in our corpus.

Word % % % %
‘Word Word ‘Word

] 1.218 fsfq 0.407 F@T 0.332 92 0.234

Eac 0.744 F@WE 0.392 «F 0.325 °F 0.223

q 0.723 W8I 0.387 &G 0.313 f5® 0.217

A= 0.651 &@wis 0374 T 0.272 9= 0.216

= 0.63 TS 0.366 JIAS 0.266 I 0.216
Rl 0.563 T 0.364 @2 0.263 &4 0.202
IEE 0537 W 0.363 4 0.242 fe& 0.199
UEY 0.488 TW® 0.36 ASFE 0.242 U3 0.199
Ex 0.442 0% 0.343 W& 0.237 ®@ 0.195
FJ 0.428 ®F 0.337 o® 0.236 «d 0.186

Algorithm 1 Creating and Filtering the Lexicon

1: corp < read the whole corpus file
2: corp_filt < filter out all punctuation such as, ‘I’(full
stop),, (comma) etc and any special characters from corp

: Lex < initialize array for lexemes

: for each lexeme L; from corp_filt do

if L; does not exists in Lex then
insert L; in Lex as newline(\n)

end if

: end for

: for each lexeme wordLex from Lex do

10: wordFreq < find word frequency of wordLex in
Corpus NHMonoO1

11: (reason behind thresholds below explained in this
subsection)

12: if wordFreq < 10 then

13: remove the word wordLex from Lex immediately

14: else if wordFreq >= 10 and wordFreq <= 50 then

15: tempStoreArray <— wordLex

16: else

17: wordLex is a regular frequent valid word. Bring
no change.

18: end if

19: end for

20: check each word from tempStoreArray manually. If any
word seems unfit remove it from tempStoreArray

21: combine Lex and tempStoreArray

22: sort Lex in alphabetical order (words starting with the
character ‘9’(0985) should be at the beginning and
“2’(09B9) at the last)

23: write it to the final lexicon file

in our main lexicon file directly. The thresholds here are
set based on our study on NHMonoO1, and therefore, these
thresholds may not provide desired results in other corpora.
Finally, we have distributed the lexicon into several smaller
lexicons so that we have to process fewer words at a time

VOLUME 9, 2021

instead of the whole lexicon. Distributed lexicons boost the
processing speed, reduce the processing time and increase
readability. We have distributed the lexicons using a simple
hash function that returns only the string length of a given
lexeme. The lexicon is consists of over 1 million words,
1,043,106 words to be precise, and the file size is roughly
30 megabytes.

We have also stored the pre-calculated Double Metaphone
Values (explained in subsection V-B) with each lexeme in
separate files (keeping main lexicon files intact) for the spell
checker. At first, we have designed the proposed system
to find the Double Metaphone values of lexemes on the
fly. However, this method slows down the processing speed
drastically. The processing time of our proposed system is
reduced significantly by using the pre-calculated Double
Metaphone values.

I. DISTRIBUTION OF THE DATASETS

To make the corpus and lexicon easy to process and readily
available to all researchers, both the corpus and the lexicon
files are stored in the most common file formats, i.e., the
CSV and TXT formats. All individual files and the aggregated
single files for both the corpus and the lexicon are stored
in the institutional private repository. The file sizes of the
whole corpus and the whole lexicon are roughly 2.0GB and
30MB, respectively. Other minor datasets, i.e., Numerical
suffix dataset and three test datasets, are also available in the
repository. Numerical suffix dataset is a minor dataset that
contains a list of all possible suffixes for Bangla numbers.
All these datasets are freely available and can be found at
https://git.io/JzJ4w.

V. DEVELOPING THE SPELL CHECKER

This section demonstrates different aspects of the proposed
spell checker segment, explaining different phonetic algo-
rithms, types of spelling errors, procedures, and algorithm of
the proposed spell checker segment.

Phonetic algorithms are essential for an all-inclusive
spell checker. Soundex is a phonetic algorithm designed in
the 1900s [13], [37]. The Soundex algorithm phonetically
encodes a group of similar-sounding consonant characters.
The process usually excludes vowels except for the vowels
at the beginning of the word. Soundex is an ancient pho-
netic algorithm and has many imperfections. Metaphone is
another phonetic algorithm developed in 1990 by Lawrence
Philips [15] that improved the earlier Soundex algorithm in
several aspects. Metaphone algorithm is more intricate than
the previous algorithms because it included new rules to
handle different spelling inconsistencies. In 2000, the same
author of Metaphone proposed a revised version of the Meta-
phone called Double Metaphone [15]. This is a highly sophis-
ticated phonetic algorithm containing all multifaceted rules
to grip several types of elocution. Besides, it makes name
searching simpler since Double Metaphone considers the
pronunciation of different names as well. Double Metaphone
provides a primary and a secondary code for a single word.

141087

IEEE Access

N. Hossain et al.: Development of Bangla Spell and Grammar Checkers: Resource Creation and Evaluation

This gives us advancement over other phonetic algorithms.
Since Bangla has numerous words with different pronunci-
ations in different contexts, Double Metaphone gives us the
perfect solution.

On the other hand, edit distance is used to determine
dissimilarities between two strings or words by calculating
the minimum number of actions required to transform one
string into the other. Equation 4 shows the Levenshtein’s
distance between two strings a and b, which is specified by
levg p(|al, |b]) where, the length of strings a and b are |a| and
|b| respectively.

max(i, j) if min(i, j) = 0,
leva p(i.J) = . levap(i—1,j) + 1 '
’ min | levy (@, j— 1)+ 1 otherwise.
levap(i—1,j—1)+1
)

TABLE 9. Levenshtein’s distance between two words.

Edit distance with misspelt

Lexeme word “R¥ie(bidana)”
W9 (dana) 2

49 (bidhana)

QA (anudana) 3

Table 9 shows the Levenshtein’s edit distance between
the misspelt Bangla word «fW9” and some similar words
from the lexicon. From the above table, we can see that
the word “fR4I9” has the smallest edit distance with the
word “fW¥”. Levenshtein’s distance can be used to find
the dissimilarities between two Double Metaphone encoded
strings. Table 10 illustrates Levenshtein’s distance between
two Double Metaphone encoded words. For example, our
Double Metaphone encoding technique returns “bdn’ for
the misspelt word “fWI9”. Since the Double Metaphone
encoding distance between the words =" and “f4=>
is 0, our system assumes the correct word for the misspelt

word “fRWI9” should be <.

TABLE 10. Levenshtein’s distance between two double metaphone
encoded words.

Lexicon Double Metaphone Levenshteins distance

word of lexicon word with misspelt double
metaphone encoded
word bdn

alq dn 1

g bdn 0

qat ndn 1

A. TYPES OF SPELLING ERRORS

According to Ahmed [38], Bhatti et al. [39], and
Dong et al. [40] spelling mistakes can be divided into
following types. Our proposed system is capable of detecting
all these different types of spelling mistakes.

141088

1) TYPOGRAPHIC ERROR

Typographic errors occur due to typing mistakes. For exam-
ple, we usually place our fingers on a wrong key while typing
faster on the keyboard or tapping on a screen. This type of
error usually does not fall under any linguistic rules. Some
examples of typographic errors have been shown in Table 11.

TABLE 11. Typographic error example in Bangla.

Misspelt Correct Transliterations
E T,

tror Sype Word Word (misspelt & correct)
Insertion leey = dé'isa & desa
Deletion RIS Bl banla & banla
Substitution qEN@H - AL banladésa& banladesa
Transposition T TN kamala & kalama

2) COGNITIVE ERROR

A cognitive error occurs due to the similar pronunciation of
alphabets. Cognitive error is also called Phonetic error. For
example, in Bangla, alphabets ‘“I’(PA) and ‘%’ (PHA) sound
the same. In Bangla, there are many other alphabets with
similar sound (e.g. “I"(GA)-‘9’(GHA), “*I"(SHA)-*1"(SA)-
‘F’(SSA), ‘(BA)-‘®’(BHA) and so forth). That is why
cognitive error is widespread in Bangla. Table 12 shows some
examples of cognitive error in Bangla.

TABLE 12. Cognitive error example in Bangla.

Misspelt Word Correct Word

A (desa) or M (desa)
A (basa) or O™ (bhasa)
(MEF (golapha) or CFEA (gholapa)

@™ (désa)
@l (bhasa)
¢AMtIe (golapa)

3) VISUAL ERROR
A visual error occurs due to the same visual shape of
alphabets. Our study shows that in Bangla, we have some
similar-looking alphabets as well. Table 13 shows the alpha-
bets that look similar in Bangla.

These similar alphabets may lead to visual errors in Bangla
words. Table 14 shows some examples of errors in Bangla
words that have been originated from visual errors.

4) RUN-ON ERROR

This type of error occurs when two correct words have been
joined since no inter-word gap is given by mistake. Table 15
shows an example of missing space/ run-on error. This type of
error will be detected easily since joining two correct words
might create an incorrect word that should not exist in our
lexicon or anywhere in the corpus.

5) SPLIT-WORD ERROR
This type of error occurs when one word is split into two
strings of characters because a gap is mistakenly inserted

VOLUME 9, 2021

N. Hossain et al.: Development of Bangla Spell and Grammar Checkers: Resource Creation and Evaluation

IEEE Access

TABLE 13. Visually similar Bangla alphabets.

T(U) = §(@UU)
I (BA) = T (RA)
J(NA) = 9 (NNA)
T (DDA) = T (RRA)
G (DDHA) = T (RRHA)
T(YA) = T(YYA)
T (YA) = T (SSA)

TABLE 14. Visual error example in Bangla.

misspelt Word Correct Word

AR (pahada) ARG (pahara)
T (bisesa) e (bisesa)
F6eA (phutarala) FBIA (phutabala)

TABLE 15. Run-on error example in Bangla.

Misspelt Word

a9 (misti'alu)

Correct Word

2 =9 (misti alu)

within the word. Our spell checker may or may not detect this
error as a misspelt word(s) since these individual word frag-
ments may or may not meaningful in Bangla. If an individual
string is incorrect, only then that specified string will be
marked as an error. Table 16 shows an example of split-word
error.

TABLE 16. Split-word error example in Bangla.

Misspelt Word

(57 N (motara gari)

Correct Word

(5218 (motaragari)

All the above errors can be summarised into two types of
errors, i.e., Non-word error and Real-word error.

6) NON-WORD ERROR

Non-word error results from a spelling error where the
word itself is not in the lexicon/dictionary and is not
known. For example, mistakenly spelling ‘el (kamala)’
into ‘“FNN(kamama)’ is a non-word error since “FI” is not
in our lexicon.

7) REAL-WORD ERROR

Real-word error is due to misspelling a word to make another
word that is in the lexicon. For example, mistakenly spelling
“P¥ell(kamala/Orange)’ into ‘GRINeI(komala/Soft)’. This is a
real-word error because ‘CFINST’ is in our lexicon; however,
this is wrong in this context. Our proposed method does not
consider it as a spelling error. Instead, it considers the error
as a semantic error [41] and shows it as a grammatical error.

VOLUME 9, 2021

B. PROPOSED DOUBLE METAPHONE ENCODING

We have used Double Metaphone encoding as our phonetic
algorithm to detect phonetically similar Bangla words. The
two different codes (i.e., a primary and a secondary) for
a single word provided by the Double Metaphone help to
identify different pronunciations of the same alphabet. Our
encoding table is based on the encoding table projected by
Uzzaman and Khan [3], which is the only Double Metaphone
encoding available in Bangla. We have decided to use their
encoding table after a rigorous study by manually check-
ing each Bangla alphabet, their IPA (International Phonetic
Alphabet) symbols, and the standard pronunciation of each
character regulated by Bangla Academy. We have proposed
the following minor improvements for the encoding table:

o Letter “a” (U+098B): We code the letter ‘¥’ as ‘1’
instead of ‘ri’ in our encoding table. For a proper sug-
gestion, the edit distance should be as less as possible
where 0 is considered the closest. We compare both
codes (‘ri’ and ‘r’) side by side to observe the dif-
ference. Table 17 demonstrates an example where the
edit distance of the ‘ri’ code is 1. On the other hand,
code ‘r’ results in an edit distance of 0. If we code ‘¥’
as ‘r’, the spell checker shows "ﬂiﬁ’(gsi)’ at the top of the
suggestion list for the misspelt word ff®i(risi)’ whereas,
for the code ‘ri’, the system does not show “AfF* in the
suggestion list since it has higher edit distance value.

TABLE 17. Example comparison of “J{" between previous and our
approach.

Approach Word Primary Code Edit Distance
‘Y’ coded ri 4 (correct) ris .
ED s) =1
[3] ﬁ'ﬁf(incorrect) rs (ris|rs)
‘4’ coded r A (correct) rs _
(Our Approach) f#fi(incorrect) IS ED(rs|rs) = 0

o Letter 3’ (U+09C3): We have observed that there is no
mention of the letter *” in [3] separately. The authors
of that paper gave an example that demonstrates that
they considered the letter ‘3’ same as the letter 4.
However, these two letters are different with different
Unicode codes, U+098B and U+09C3, respectively.
Table 18 shows an example of this scenario, where we
have demonstrated the consequences of not coding the
letter “%’ uniquely and separately. Without a unique
code, the letter provides an edit distance of 1, whereas
our approach (coding the letter with ‘r’) provides an
edit distance of 0. Thus, unlike the previous approach
(not assigning any code for “”), our coding successfully
shows ‘ﬁ{ﬁ (bikrta)” at the top of the suggestion list for
the incorrect word ‘R<fae (bikarita)’.

o Letter ‘5’: In the previous encoding [3], the letter ‘B’
(Rha) is incorrectly mapped to the Unicode code point
‘U+09A2’, which is actually the Unicode code point of
the letter ‘G’ (Ddha) that might lead to incorrect deci-
sions by a system. Although both the letters look similar,

141089

IEEE Access

N. Hossain et al.: Development of Bangla Spell and Grammar Checkers: Resource Creation and Evaluation

TABLE 18. Comparison of coding '}’ between previous and our approach.

Approach ‘Word Primary Code Edit Distance
‘" not coded %W bkt _
< 3] (correct) ED(bkt|bkrt)=1
fefre bkrt
(incorrect)
‘4’ coded with r 7o bkrt _
(éur Approach) (correct) ED (bkrt[bkrt)=0
frefre bkrt

(incorrect)

the pronunciation and meaning of these two letters are
different. Therefore, we have changed the mapping to
the correct name and Unicode as shown in Table 19.

TABLE 19. Unicode correction for letter ‘D",

Approach Letter ~ Unicode
Previous Encoding [3] v U+09A2
Our Approach v U+09DD

We have made a few other negligible changes and fur-
nished the encoding table before using it in our proposed
approach.

C. METHODOLOGY OF THE SPELL CHECKER

The proposed algorithm for our spell checker system is shown
in algorithm 2. The spell checker system removes punctuation
from any given texts and splits them using whitespace, creat-
ing smaller chunks called lexemes. Since the proposed spell
checker is based on the Bangla language, it avoids processing
any English word or number (based on the Unicode code
point*), and considers it as a correct lexeme. Validating a
Bangla number is more straightforward. If a lexeme is entirely
numerical, containing all Bangla digits (such as 8¢), the sys-
tem marks it as a correct lexeme. However, if the lexeme is
alphanumerical (such as 8(?1%), the suffix is then split from
the numerical part. The spell checker marks it as the correct
lexeme if the suffix exists in the suffix dataset; otherwise,
it is identified as incorrect (such as 8¢5). A list of lexemes
is suggested based on the suffix dataset embedded with the
numerical part of the erroneous lexeme.

On the other hand, for regular Bangla lexemes, the spell
checker generates a hash key against each lexeme. The key is
the string length of the lexeme. The system then searches for
that lexeme in the lexicon using the hash-key (K'). The system
considers a lexeme valid if it finds the lexeme in the lexicon.
Otherwise, it marks the lexeme as misspelt. To give appropri-
ate suggestions for a misspelt lexeme, the system generates
the DMV (Double Metaphone Values) of the lexeme and finds
the edit distance between the DMV and the pre-calculated
DMVs of all lexemes in the lexicon-K (lexicon of string
length K) along with lexicon-(K — 1) (lexicon of a string
length K — 1), and lexicon-(K + 1) (lexicon of a string length

4https://WWW.unicode.org:{/cha.rts/

141090

K + 1). Following this method, the spell checker generates
a suggestion list of lexemes where the edit distance is equal
or 1. The system then ranks all the lexemes from this
suggestion list based on a summation of different weights (the
lower the weight, the better/closer to the misspelt lexeme),
and subtracts the summation result from 100. Finally, it dis-
plays the highest 5 lexemes in the final suggestion list. The
summation of weights includes three measurements. First,
in which lexicon a lexeme from the tentative suggestion list
belongs to. For example, if a suggestion lexeme belongs to
lexicon-K, which might be a good suggestion since the string
length of misspelt lexeme is also K, we assign less weight (the
less, the better) to it than the lexemes that belong to the other
two lexicons K — 1 and K + 1. Second, the edit distance is
based on the DMV values between the misspelt lexeme and
each lexeme in the tentative suggestion list. Lastly, the edit
distance is based on direct Bangla characters of the lexeme
between the misspelt lexeme and each lexeme in the tentative
suggestion list.

A typographic error is a spelling mistake that does not
follow linguistic rules due to a mistake in typing the word.
Similarly, a cognitive error occurs due to similar pronuncia-
tion, and a visual error occurs due to similar looks of Bangla
alphabets. Furthermore, a run-on error occurs due to the
removal of space between two words. The erroneous words
generated by these spelling mistakes do not exist in any of our
distributed lexicons with their DMV values. Thus, the spell
checker can detect the above-mentioned spelling errors accu-
rately and can suggest appropriate words. On the other hand,
split-word errors or any errors that may create real-word
errors are detected through the grammar checker’s language
model probability. We use the combination of Bigram and
Trigram to generate a context analysis using the frequency
analysis between words and thus, identify a real-word error.

VI. GRAMMAR CHECKER

In this section, we have presented the methodology of the
grammar checker. Building a full-fledged and generalised
Bangla grammatical error correction approach is really a
challenging task due to the complicated grammatical rules
of the Bangla language, especially if the text is mixed with
spelling errors.

Algorithm 3 explains the procedure of the grammar
checker in detail. At first, it splits the input Bangla text
into sentences using ‘!’ (Bangla full-stop), and then each
sentence goes through a basic grammatical error check. The
basic check includes identifying and suggesting a solution
for redundant words error, additional whitespace errors, and
punctuation errors. The proposed grammar checker is based
on the N-gram (to be specific, bigram and trigram) language
model probability. An N-gram is a contiguous sequence of
N items from a given sample of texts. In our case, N is
equal to either 2 (bigram) or 3 (trigram) based on the size
of a given sentence. Bigram is used for short sentences
(where the word count of a sentence < 3), and trigram is
for long sentences (where the word count of a sentence > 3).

VOLUME 9, 2021

N. Hossain et al.: Development of Bangla Spell and Grammar Checkers: Resource Creation and Evaluation

IEEE Access

Algorithm 2 Spell Checker

1: IN < input text

2: IN < remove punctuations from IN (will be added back later after processing)

3: INarray < split IN into separate lexemes using whitespace

4: for each lexeme L; in INarray do

5 if L; is English word or number then
6 mark L; as English word/number and avoid processing.
7: else if ; is Bangla number then
8 if L; is entirely numerical then
9: mark L; as correct lexeme
10: else
11: LiSuf <« split suffix from L;
12: if LiSuf exists in our suffix dataset then
13: mark L; as correct lexeme
14: else
15: mark L; as incorrect
16: show suggestions from the suffix dataset embedded with numerical part
17: end if
18: end if
19: else
20: K <« generate string length of L; as hash key
21: if L; exists in lexicon-K then
22: mark L; as correct lexeme
23: else
24: mark L; as incorrect or misspelt lexeme
25: DMV < generate Double Metaphone values of L;
26: ED <« calculate levenshtein’s edit distance of DMV with all pre-generated DMV of lexemes in lexicon-K,
lexicon-K — I and lexicon-K + 1
27: SUG <« store all the lexemes where ED <=1
28: for each lexeme SUGlex in SUG do
29: SUM <0
30: if SUGlex belongs to lexicon-K then
31 SUM <« SUM + 1
32: else if SUGlex belongs to lexicon-K — I or K + I then
33: SUM < SUM +2
34: end if
35: EDDMYV <« generate edit distance between DMV value of L; and DMV value of SUGlex
36: EDWord < generate edit distance between L; and SUGlex (text to text)
37: SUM < SUM + EDWord + EDDMV
38: RANKSUGlex < 100 — SUM
39: RANK < Store SUGlex and RANKSUGlex
40: end for
41: present top 5 lexemes from RANK (if available)
42: end if
43: end if
44: end for

Our study finds that bigram probability is not efficient enough
to detect grammatically incorrect sentences if a sentence
is long or complex in structure. Trigram language model
probability increases the accuracy in almost all sentence
structures, which has the lowest perplexity amongst unigram,
bigram, and trigram [42]. Equation 5 shows the formula of
an N-gram and equation 6 shows the formula of estimating

VOLUME 9, 2021

the probabilities where w represents word, C represents count,
and N represents N of N-gram (sequence of N items). If the
language model probability is above a threshold, we consider
the sentence as grammatically correct otherwise incorrect.
The proposed system shows appropriate suggestions for the
incorrect sentence. Although it is rare in such a large corpus
like the proposed corpus, the system uses Laplace smoothing

141091

IEEE Access

N. Hossain et al.: Development of Bangla Spell and Grammar Checkers: Resource Creation and Evaluation

Algorithm 3 Grammar Checker

1: IN < input text

2: SEN < split IN into separate sentences using i(bangla full-stop)

3: for each sentence SE; in SEN do
4: [Start Basic Check]

5 if SE; contains any redundant words consecutively then
6: Mark it as grammatical error and suggest to remove redundant word.
7: end if
8 if SE; contains any additional whitespaces in between words then
9: Mark it as grammatical error and suggest to remove whitespace(s).
10: end if
11: if basic punctuation error found(such as redundant punctuation or missing punctuation) then
12: Mark it as grammatical error and suggest to remove or add punctuation
13: end if
14: [End Basic Check]
15: LEN; < generate word count of SE;
16: if LEN; <= 3 then
17: PROB; < find language model probability of SE; based on bigram counts
18: else
19: PROB; < find language model probability of SE; based on trigram counts
20: end if
21: if PROB; is above a threshold (in our case 0) then
22: Mark SE; as grammatically correct
23: else
24: Mark SE; as grammatically incorrect
25: Find Cosine Similarity(CS) between SE; and sentences in corpus
26: Keep records of results in a temporary file for sentences similar to SE;
27: Display top two closest match as a potential grammatical correct sentence for SE;
28: end if
29: end for

add 1 policy [42] to deal with zero probability.

P(W)) = HP(wuwk Nat) (5)
k=1

Cw,— N+1Wn)

P(Wn|wn N+1) = (6)
(n— N +1)

On the other hand, many existing Bangla grammar check-
ers and parsers detect errors without suggesting any solution
for the grammatical mistakes. Suggesting a solution helps a
user to correct the problem immediately and thus reduces the
time of correcting grammatical mistakes. In order to provide
appropriate suggestions, the proposed system uses the cosine
similarity algorithm [43] to measure the similarity between a
grammatically incorrect sentence and the sentences already
stored in the corpus. Cosine similarity is a metric used to
measure how similar two documents are, irrespective of
their size. Mathematically, it measures the cosine of the angle
between two vectors projected in a multi-dimensional space.
The smaller the angle, the higher the cosine similarity. Bangla
characters are double-byte unlike English, and thus, Bangla
sentences take more time in processing. After studying sev-
eral similarity measurement algorithms and different aspects
of the Bangla language, the cosine similarity algorithm has

141092

been used to find similarities between a given sentence and
the sentences in the corpus. Cosine similarity provides a
better accuracy rate and lowers the processing time as well.
In our case, it takes less than 1 second on average to process
100 MB of double-byte Bangla sentences. Equation 7 shows
the formula of the cosine similarity algorithm where 0 repre-
sents the angle of the cosine, and A and B are two vectors.

AB YR AB
AlBI
AIIBL s a2y, B2

VII. EXPERIMENTAL SETUP, RESULTS, ANALYSIS, AND
IMPLICATIONS

In this section, we have demonstrated and analysed different
experimental results of both spell and grammar checkers. For
ease of understanding, the experimental results of spell and
grammar checkers have been shown in separate subsections.

cos(9) = (7)

A. EXPERIMENTAL SETUP

The experiment has been carried out in a high-performance
computer with 32GB RAM, 6GB Graphics Card, and Intel
Xeon Processor. Python 3.6 is the core language in the exper-
iment with the scikit-learn library [32]. The proposed sys-
tem has been tested with three different test datasets, which

VOLUME 9, 2021

N. Hossain et al.: Development of Bangla Spell and Grammar Checkers: Resource Creation and Evaluation

IEEE Access

contain different types of errors to evaluate the performance
of the proposed system. Table 20 shows the size of all the
test datasets. In order to create the test sets, we have scraped
new sentences from the same sources mentioned in Table 3
and intentionally, manually manipulated sentences by putting
specific errors according to our needs. Before manipulating
the sentences, a copy of the datasets is stored to verify our
system output later and determine the accuracy rate.

TABLE 20. Test dataset size.

Data Set Type Total sentences Total words

Test-dataset-spell 8042 37377
Test-dataset-grammar 7545 34255
Test-dataset-both 8835 41236

In our datasets, Test-dataset—-spell contains sen-
tences with misspelt word(s), Test-dataset-grammar
contains sentences with grammatical mistake(s), and
Test-dataset-both contains both spelling and gram-
matical mistakes in each sentence.

B. RESULTS AND PERFORMANCE ANALYSIS

Table 21 shows some examples of error detection for different
types of spelling errors. It also shows the suggestions for each
error generated by the proposed spell checker. The position
where the error has occurred is indicated in red colour.

Example 1 has no spelling mistakes, and therefore, no sug-
gestion is generated. Two spelling mistakes (a cognitive and
a visual error) have been identified for example 2, and for
each case, several suggestions have been provided. A numer-
ical error and its tentative suggestions are shown for exam-
ple 3. The word ‘Amazon’ in example 4 has no impact on
the spell checker since it avoids processing foreign words
(i.e., English). Finally, example 5 has three errors (a cognitive,
a visual, a run-on error) in a single sentence with correspond-
ing suggestions.

Table 22 shows some examples of error detection for differ-
ent types of grammatical errors. The position where the error
has occurred is indicated in red colour. A word redundancy
error, an additional whitespace error, and two punctuation
errors are shown in examples 1, 2, and 3, respectively, with
suggestions to fix these errors. Examples 4 and 5 demonstrate
a subject-verb agreement error and a complete sentence struc-
ture error while suggestions have been generated for both
cases. Table 23 demonstrates some sample example cases
where the proposed system fails to detect errors or suggest
appropriately. The explanations of the reasons for failures and
how these failures can be overcome are also mentioned in the
table.

For measuring the accuracy of our system, we have tested
our system with the sentences mentioned in Table 20 and
verified the results with the correct version of the sentences.
If our system detects all the errors in a sentence and provides
the correct suggestions as well, only then we consider it as a
‘success’. On the other hand, in some sentences, the system

VOLUME 9, 2021

successfully detects and suggests one error but fails to detect
all the errors in the sentence, especially in the sentences con-
taining both spelling and grammatical errors. This is a ‘fail-
ure’. In addition to that, when the proposed system detects all
the errors successfully but does not provide the appropriate
suggestions is also a ‘failure’. The test summary is illustrated
in Table 24. In this table, accuracy has been measured using
the following equation:

CDS
Accuracy = TS * 100 (8)

where, CDS = The number of sentences where all spelling or
grammatical errors are successfully detected and successfully
suggested with the appropriate solution. 7S = The number of
sentences in that particular test dataset.

The accuracy rate is the highest when we test our system
with the test dataset that contains spelling errors only and
the lowest when we test our system with the test dataset that
contains both spelling and grammatical errors. The average
accuracy rate is roughly 94.88%. Although it is rare, it fails
to place the closest word at the top of the suggestion list in few
cases of the spell checker. Instead, it places the closest word
at the bottom of the suggestion list. This happens because
similar-sounding Bangla alphabets misguide the proposed
system in this rare situation. The reason behind the grammati-
cal error detection failure is the statistical approach that lacks
similar sentences in the corpus.

C. COMPARISON WITH THE EXISTING SOLUTIONS
Lexicon-based spell checkers need substantially large data
to cover, as many words as possible, to detect errors, and
to generate the appropriate suggestions. In terms of the size
of the lexicon, our proposed spell checker shows major
advancement over the existing solutions. Note that [19] is
based on a lexicon with the size of 50,000 words, where our
proposed lexicon consists of over 1 million words. On the
other hand, [15] and [17] did not mention about their lexicon
sizes and collection procedures. However, they tested their
spell checker with datasets containing 1,607 and 2,450 words,
respectively. Most of these approaches, including recent
work [20] and [21] handle specifically typographic errors,
[22] handles particularly real-word errors where the proposed
approach handles all different types of errors that exist in
Bangla language. Another significant difference between our
proposed spell checker and [13] to [22] (excepts [20]) is
that they tested their spell checker on test sets consisting of
only single words instead of complete sentences, which might
not reflect the real-life situations and complexities. Finally,
all the previous approaches, including the recent recurrent
neural network (RNN)-based spell checker (82.86%) [22]
show lower accuracy rates than the proposed spell checker,
which is 97.21%.

When a statistical approach is being used, the more
data a grammar checker gets, the better performance it can
provide. Our proposed grammar checker leverages its per-
formance using our very large-sized corpus. [24] to [31]
(except [26], [29], and [30]) proposed some CFG based

141093

IEEE Access

N. Hossain et al.: Development of Bangla Spell and Grammar Checkers: Resource Creation and Evaluation

TABLE 21. Spell checker examples.

SL | Input Results Suggestion
1 BIGIRIIEOE] Wﬂﬁﬁf EIRFWE ANEP @&- | [No spelling error] No suggestion
v fofes 3w wiow afsens Figle meaz
1T GITCSHE ARy A emIeTa ol |
2 &S 59 ATS GF0et AFTAE 3 W@Fﬁlﬁﬂ? [2 spelling errors found] 1. I593 929, I2Ae, IR(F, I2A3, I2I0!
T SR N Aol AEe alemd | alfe vl aiEfete qPed AZE @ WPl | 2. JIFAR JAHCAE, ATHA, TR,
HIFEE SHER GF ¢ ATF AW FE | A TR SRIC WA Wef I eiewE | JTRHEER, TIFERS
HTHEA TLYE (6F 8 AT AR FCE |
3 a2 I T Soefs (B At (WG 235 A | [1 spelling error found] 1. 3358 233, 2B
S I (G FH TOfGE MBF T do | @B I I8 To@e MBF A B 235! A
e @ e I @B FH JOMGE IR AN So
aeLEe Q@
4 TS (P SIS Amazon WIE, 8 eI [No spelling error] No suggestion
@ 21
5 Bl Wf;ﬁ“T-”B/T‘a@tﬂ TRfFe Afe st | [3 spelling errors found] 1. 7rfes Afe, siEre, A=Te, «ReT,
TR PR ' (WP R A AATFOR | AR Aot s[gs ARl T | ArRies
BRI &) OIeE SfEes, Fe, @, Wt | S 5 2 (@l @92 O Aififigeend | 2. (ARl (oS, COllEeR, (S, (T,
8 FAI | BRI &) Ot (B S, aieee, IRoT | oSt
8 A 3. fufEenes i e
TABLE 22. Grammar checker examples.
SL | Input Results Suggestion
1 AR TR T QRO PAR IS R [1 grammatical error found] 1. redundancy error: duplicate “<RIS-
ST 2 (TCHE SN %W FCH | T TFEE T QAL o wERen | A
TRl g FIEeEE SR A I |
2 92 AT e AT 91? 7Y @ | [1 grammatical error found | 1. whitespace error: extra whitespaces
AE BT R A7 5T 47 a6 | @R ATCAT TOAES A F T @R
I A G HeICeTe WA ARG TN 47 a0
QI |
3 | 5 799 @rane Fiez o9 21w 29 w41 Ui e, | [2 grammatical errors found] 1. punctuation error: extra ‘,’
TYTR AR AT I I (OTF GO | 5% a4 GTc Fiez o1 216 RN 341 O =1, ! | 2. punctuation error: missing end-
TYAE S TR AR R (U0 Soram? | marker ¢V
4 SR @I 2lfE IR FACR, T WL O FIE [1 grammatical error found] 1. agreement error: use “Af&”, “sFey”
A FTCIE 41 2[00 | SIH] G2 S FIRT | S 90 Y& 92T FAR, T A2 O T
FACS AT | TALFTOR G2 0T | Al 9F3 A& IR
FACO AT
5 R IR APGAR (Totad [ACLTEE | [1 grammatical error found] 1. structure error: use “APoNE {ToER
et TTe | 2 ! 9= 10! SItd »[od 906 1 | 12y AeaRl wTetEd et | R [asl Tt AR FEee 1”7
(el T 11 e Rt Re AT Ie e
T |

parsers for Bangla sentences with reasonably small-sized
datasets. References [23], [26], [29], and [30] are
moderate-sized statistical grammar checkers where [23] has
a corpus of 5,000 words, and [29] has a corpus of 250K sen-
tences collected from two websites, and [30] has two datasets
combining 158487 sentences in total. Although authors of
[26] have mentioned using a moderately large size corpus
of 10 million words, they did not mention how and from
where they collected their data or how they processed their
corpus. Therefore, they failed to establish the credibility of
the corpus. On the other hand, our proposed grammar checker
has a corpus of over 100 million words. The accuracy rates of
[23], [26], and [30] are 38%, 82%, and 74.5%, respectively.
Moreover, the Deep Neural Network-based sequence to
sequence learning grammar checker [29] shows an accuracy

141094

rate of 79%. The accuracy rates of these existing solutions
are comparatively low, while the proposed grammar checker
shows a satisfactory accuracy rate of 94.29%.

Finally, all the existing solutions target to solve a partial
problem, i.e., either a spell checker or a grammar checker
but not both. We are the first to take a holistic approach
and develop a spell and grammar checker in a single sys-
tem. Our combined spell and grammar checker shows a
satisfactory accuracy rate of 93.13% with the specific test
dataset to test the combined spell and grammar checker.
However, the average accuracy rate combining results from
the 3 distinct test datasets by the proposed spell and grammar
checker is 94.88%. Table 25 shows a summarised comparison
between recent and notable spell and grammar checkers with
the proposed system.

VOLUME 9, 2021

N. Hossain et al.: Development of Bangla Spell and Grammar Checkers: Resource Creation and Evaluation

IEEE Access

TABLE 23. Sample examples of failed cases.

SL | Input Problem/Error Reason

1 JSAIE Gugol IIGE @M @&- | Although spelling of the word ‘Google’ | The entire work is for Bangla language and thus, the
o U s | is incorrect, the spell checker does not | spell checker avoids processing any foreign words for

detect it as incorrect. correctness.

2 ASITT (¥ TITSR (O AGF- | ISITT @ ST (91 RS d0o (AF | In recent days, Bangla Academy changes spellings
oS 300 (ATF d¢o (Ff& GEF | S¢o (P& GETTd W AT | of many frequently used Bangla words. Since the
A A | The well-known spelling of cow in | changes made in recent days and the proposed lexicon is

Bangla is ‘9% However, Bangla | based on previous public data and contains only high-

Academy recently updated the spelling | frequency words, it does not recognise (I as a valid

as ‘(M. word. We are working to introduce these new spellings
into the lexicon.

3 afSfie I 19w & e | el ST o1aw weet i 99 W@ (3@ | Although Bangla is spoken in both Bangladesh and
bol i w fm «de BES ﬁlﬂ"@?ﬁ'ﬁ%ﬁml West Bengal of India, the pronunciation and use of
PR | Although the synonym of salt is both | many Bangla words are different in these two places.

%9 and ‘99’ in Bangla, the spell | For example, the words “¥1q9, HE, (T, WNES” are

checker detects ‘9’ as incorrect. commonly used in Bangladesh while the same words
are being replaced by “Jd, ¥, BI¥, (TSF” in West
Bengal, India. Since the sources of the corpus are all
from Bangladesh, the spell checker does not recognise
many spellings from the West Bengal side. We can solve
this issue by adding sources from West Bengal in the
upcoming version of the corpus.

4 93 woifed #if5 (271 8 g2 - | 93 werlfed A5 (=t @ 72 (I@E W« 45 | The proposed system fails to identify name entities and
@@ W AEE oo T AW 1 | oW @ TR recognises name entities as errors due to the absence of

The person’s name, ‘AFF is recognised | Named-entity Recognition (NER) in the system. Lack

as a mistake. of a highly accurate Bangla NER necessitated us to
avoid using the existing NERs. We are working on
to build an NER for the proposed system that will be
embedded into the future version.

5 | O GE g AtieR) g e | @ieE g7 g9 aeiee) @ WA WA @ 2@ | In Bangla language, there is a term @@ *%’ that is
= @ 7 IR AR | repeated words with specific meaning. The repeated

The duplicate words in the above ex- | words usually are adjectives and indicate excess or lack

ample are recognised as incorrect but | of something. However, the proposed system considers

these duplicate words are correct in | these &% *% as duplicate words error. We need a

this context. separate database that will contain a collection of these
repeated words with definite meaning.

6 &I TS, (FlEes, (i e g- | & IS0, (AR, i e kel ﬁ'@? 21 | The proposed system shows an incorrect suggestion for
ol 538 (712 1| ARIF (LN SN | AR—E (LA @rEr et ed the grammatically incorrect sentence due to the text
e e The structure of the second sentence is | scarcity of similar sentences in the corpus. The text

grammatically incorrect. The system | similarity measure algorithm finds that sentence (i.e.,
suggests two sentences: 1) @INRAI WeH | the incorrect suggestion) closer to the original sentence
W@ RE @, 2) SRl WA e | than other sentences in the corpus. By increasing the
g S The first suggestion is | corpus size from various sources will solve this problem.
grammatically correct, meaningful and

represents the intended meaning of the

original sentence. However, the second

suggestion, although a grammatically

correct one, has a different meaning

than the original sentence.

TABLE 24. Performance summary of the proposed system.

Spell Checker

Grammar Checker

Spell and Grammar
Checker

Dataset used:

Total Sentences:
Error detected:
Error not detected:

Accuracy rate:

Test-dataset-spell

Test-dataset-

Test-dataset-both

grammar
8042 7545 8835
7818 7114 8228
257 431 607

97.21% 94.29% 93.13%

VOLUME 9, 2021

141095

IEEE Access

N. Hossain et al.: Development of Bangla Spell and Grammar Checkers: Resource Creation and Evaluation

TABLE 25. Comparison between previous works and the proposed
system.

Spell/ Corpus Lexicon
Approach ~ Grammar Size Size Accuracy
[19] Spell - 50,000 96.48%
[21] Spell - 959,232 97%
[22] Spell - 1,008,759 82.86%
[26] Grammar 10,000,000 - 82%
[29] Grammar 1,678,970 - 79%
[30] Grammar 1,061,863 - 74.5%
Proposed Both 100,142,522 1,043,106 97.21% &
94.29%

D. IMPLICATIONS

The findings of this study also have important theoretical
and practical implications. First, in the field of statistical
linguistic research, a reliable, sufficiently large, and balanced
corpus is an essential aspect for linguistically complex lan-
guages such as Bangla. The lack of such corpus in Bangla is a
bottleneck for the advancement of the linguistic research that
is expected to be solved by the proposed NHMonoO1 corpus.
Second, the proposed lexicon is a generous inventory of
Bangla lexemes that could be used by the future researchers in
numerous areas of Natural Language Processing (NLP), such
as spell checker, sentiment analysis, opinion mining, sentence
completion, and other linguistic research areas. Third, several
related research works, including the very recent works on
the spell and grammar checker in Bangla language have
been explored and analysed in this paper. Moreover, differ-
ent types of errors have been shown, with examples in the
Bangla language. Future researchers on similar topics may
narrow down and set precise research goals based on this
information in Bangla. Fourth, the general approach of the
proposed spell and grammar checker can be applied to other
similar multi-byte languages that share the same linguistic
rules and features. Thus, researchers from other similar lan-
guages would find significant guidance to develop their own
from the proposed spell and grammar checker. On the other
hand, we are expecting that our proposed spell and grammar
checker would bring a positive impact on publishers, blog-
gers, and writers of the Bangla language.

VIIl. CONCLUSION AND FUTURE WORK

The proposed system exhibits a Bangla spell and grammar
checker. It also demonstrates the development procedure of
the largest Bangla monolingual corpus. By extracting unique
lexemes from this corpus the largest Bangla monolingual
lexicon has also been built. The paper illustrates every step of
building the corpus, lexicon, and spell and grammar checker.
The proposed work achieves the accuracy rate of 97.21% in
the spell checker segment, 94.29% in the grammar checker
segment, and 93.13% in the combined spell and grammar
checker. The approach can be used for any other low-resource
languages that have similar structure to Bangla. Moreover,

141096

the lack of adequate corpus and lexicon is one of the major
hindrances that slowed down the progress of NLP researchers
in Bangla language. Since the corpus and lexicon are openly
accessible, both researchers from academia and developers
from industries in this area will be benefited.

In the future, authors are planning to develop an
open-source mobile app and an extension to browsers for
users to use the proposed Bangla spell and grammar checker.
The system would collect users’ usage data with users’ per-
mission, e.g., selection of suggestions for an erroneous word
or sentence. This data would be used to improve the next ver-
sion of the proposed spell and grammar checker application.

ACKNOWLEDGMENT

The authors would like to thank all the faculty and staff mem-
bers of the Computer Science and Engineering Department of
United International University, Bangladesh, who supported
the work by providing software and hardware resources.

REFERENCES

[1] M. Jishan, K. R. Mahmud, A. Azad, M. Rashid, B. Paul, and M. S. Alam,
“Bangla language textual image description by hybrid neural network
model,” Indonesian J. Electr. Eng. Comput. Sci., vol. 21, pp. 757-767,
Feb. 2021.

[2] M. A. A. Mumin, A. Awal, M. Shoeb, M. R. Selim, and M. Z. Igbal,
“Sumono: A representative modern Bengali corpus,” SUST J. Sci. Tech-
nol., vol. 21, no. 1, pp. 78-86, 2014.

[3] N. UzZaman and M. Khan, “A double metaphone encoding for Bangla
and its application in spelling checker,” in Proc. Int. Conf. Natural Lang.
Process. Knowl. Eng., Oct. 2005, pp. 705-710.

[4] R. Sridharamurthy, T. B. Masood, A. Kamakshidasan, and V. Natarajan,
“Edit distance between merge trees,” IEEE Trans. Vis. Comput. Graphics,
vol. 26, no. 3, pp. 1518-1531, Mar. 2020.

[5] N.S.Dashand B. B. Chaudhuri, “Corpus based empirical analysis of form,
function and frequency of characters used in Bangla,” in Proc. Special
Issue Corpus Linguistics Conf. Lancaster, U.K.: Lancaster Univ. Press,
2001, pp. 144-157.

[6] K.M.Y.A.Majumder, M. Z. Islam, N. UzZaman, and M. Khan, “Analysis
of and observations from a Bangla news corpus,” in Proc. 9th Int. Conf.
Comput. Inf. Technol., (ICCIT), 2006, pp. 520-525.

[71 D. M. E. Khan, “Creation and analysis of a new Bangla text corpus
BDNCO1,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 5,no. 11, pp. 260-266,
Nov. 2017.

[8] M. F. Khan and A. M. Sobhan, ““Observations from statistical processing
of BDNCOI corpus,” Int. J. Appl. Inf. Syst., vol. 3, no. 3, pp. 1-7, 2012.

[9] S. Ahmed, N. Sadeq, S. S. Shubha, M. N. Islam, M. A. Adnan, and
M. Z. Islam, ‘‘Preparation of Bangla speech corpus from publicly available
audio & text,” in Proc. 12th Lang. Resour. Eval. Conf. Marseille, France:
European Language Resources Association, May 2020, pp. 6586-6592.
[Online]. Available: https://aclanthology.org/2020.Irec-1.811

[10] D. Goldhahn, T. Eckart, and U. Quasthoff, “Building large monolin-
gual dictionaries at the leipzig corpora collection: From 100 to 200
languages,” Natural Lang. Process. Group, Univ. Leipzig, Leipzig,
Germany, Tech. Rep., May 2012, pp. 759-765. [Online]. Available: https://
aclanthology.org/L12-1154/

[11] M. Biswas, R. Islam, G. K. Shom, M. Shopon, N. Mohammed, S. Momen,
and A. Abedin, “BanglaLekha-isolated: A multi-purpose comprehensive
dataset of handwritten Bangla isolated characters,” Data Brief, vol. 12,
pp. 103-107, Jun. 2017.

[12] M. T. Alam and M. M. Islam, “BARD: Bangla article classification using
a new comprehensive dataset,” in Proc. Int. Conf. Bangla Speech Lang.
Process. (ICBSLP), Sep. 2018, pp. 1-5.

[13] M. T.Hoque and M. Kaykobad, ‘“Coding system for Bangla spell checker,”
in Proc. 5th Int. Conf. Comput. Inf. Technol., Dhaka, Bangladesh, 2002,
pp. 182-185.

[14] N. Uzzaman and M. Khan, “A Bangla phonetic encoding for better
spelling suggestion,” in Proc. 7th Int. Conf. Comput. Inf. Technol., Dhaka,
Bangladesh, 2004, pp. 1-6.

VOLUME 9, 2021

N. Hossain et al.: Development of Bangla Spell and Grammar Checkers: Resource Creation and Evaluation

IEEE Access

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

N. Uzzaman and M. Khan, “A comprehensive Bangla spelling checker,”
in Proc. Int. Conf. Comput. Process. Bangla, Dhaka, Bangladesh, 2006,
pp. 1-8.

M. S. Ahmed, T. Goncalves, and H. Sarwar, “Improving Bangla OCR
output through correction algorithms,” in Proc. 10th Int. Conf. Softw.,
Knowl., Inf. Manage. Appl. (SKIMA), 2016, pp. 338-343.

P. Mandal and B. M. M. Hossain, “Clustering-based Bangla spell checker,”
in Proc. IEEE Int. Conf. Imag., Vis. Pattern Recognit. (iclVPR), 2017,
pp. 1-6.

S. Sooraj, K. Manjusha, M. A. Kumar, and K. P. Soman, “Deep learning
based spell checker for Malayalam language,” J. Intell. Fuzzy Syst., vol. 34,
no. 3, pp. 1427-1434, Mar. 2018.

T. Mittra, S. Nowrin, L. Islam, and D. C. Roy, “A Bangla spell checking
technique to facilitate error correction in text entry environment,” in Proc.
Ist Int. Conf. Adv. Sci., Eng. Robot. Technol. (ICASERT), May 2019,
pp. 1-6.

H. M. M. Hasan, M. A. Islam, M. T. Hasan, M. A. Hasan, S. I. Rumman,
and M. N. Shakib, “A spell-checker integrated machine learning based
solution for speech to text conversion,” in Proc. 3rd Int. Conf. Smart Syst.
Inventive Technol. (ICSSIT), Aug. 2020, pp. 1124-1130.

I. Ahamed, M. Jahan, Z. Tasnim, T. Karim, S. M. S. Reza, and
D. A. Hossain, “Spell corrector for Bangla language using Norvig’s algo-
rithm and jaro-winkler distance,” Bull. Electr. Eng. Informat., vol. 10,
no. 4, pp. 1997-2005, Aug. 2021.

M. N. Jahan, A. Sarker, S. Tanchangya, and M. A. Yousuf, “Bangla
real-word error detection and correction using bidirectional Istm and
bigram hybrid model,” in Proc. Int. Conf. Trends Comput. Cognit. Eng.,
M. S. Kaiser, A. Bandyopadhyay, M. Mahmud, and K. Ray, Eds. Singa-
pore: Springer, 2021, pp. 3-13.

M. J. Alam, N. UzZaman, and M. Khan, “N-gram based statistical gram-
mar checker for Bangla and English,” in Center for Research on Bangla
Language Processing (CRBLP). Dhaka, Bangladesh: BRAC Univ., 2006,
pp. 119-122.

K. M. A. Hasan, A. Mahmud, A. Mondal, and A. Saha, “Recognizing
Bangla grammar using predictive parser,” Int. J. Comput. Sci. Inf. Technol.,
vol. 3, no. 6, pp. 61-73, Dec. 2011.

M. A. Islam, K. M. A. Hasan, and M. M. Rahman, ““Basic HPSG structure
for Bangla grammar,” in Proc. 15th Int. Conf. Comput. Inf. Technol.
(ICCIT), Dec. 2012, pp. 185-189.

R. Rahman, M. Habib, M. Rahman, S. Shuvo, and M. Uddin, “An inves-
tigative design based statistical approach for determining Bangla sentence
validity,” Int. J. Comput. Sci. Netw. Secur., vol. 16, pp. 30-37, Dec. 2016.
R.Z.Rabbi, M. I. R. Shuvo, and K. M. A. Hasan, ‘‘Bangla grammar pattern
recognition using shift reduce parser,” in Proc. 5th Int. Conf. Informat.,
Electron. Vis. (ICIEV), May 2016, pp. 229-234.

M. M. Rahman, M. Abdulla-Al-Sun, K. M. A. Hasan, and M. I. R. Shuvo,
“Designing a Bangla parser using non-deterministic push down
automata,” in Proc. Int. Conf. Electr, Comput. Commun. Eng. (ECCE),
Feb. 2017, pp. 571-576.

S. Islam, M. F. Sarkar, T. Hussain, M. M. Hasan, D. M. Farid, and
S. Shatabda, ““Bangla sentence correction using deep neural network based
sequence to sequence learning,” in Proc. 21st Int. Conf. Comput. Inf.
Technol. (ICCIT), Dec. 2018, pp. 1-6.

S. F. Shetu, M. Saifuzzaman, M. Parvin, N. N. Moon, R. Yousuf, and
S. Sultana, “Identifying the writing style of Bangla language using natural
language processing,” in Proc. 11th Int. Conf. Comput., Commun. Netw.
Technol. (ICCCNT), Jul. 2020, pp. 1-6.

A. S. Prapty, M. R. Anwar, and K. M. A. Hasan, ““A rule-based parsing for
Bangla grammar pattern detection,” in Proc. Int. Joint Conf. Adv. Comput.
Intell., M. S. Uddin and J. C. Bansal, Eds. Singapore: Springer, 2021,
pp. 319-331.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, and B. Thirion,
“Scikitlearn: Machine learning in Python,” J. Mach. Learn. Research.,
vol. 12, pp. 2825-2830, Nov. 2011.

T. Eckart, U. Quasthoff, and D. Goldhahn, “Language statistics-based
quality assurance for large corpora,” in Proc. Asia Pacific Corpus Linguis-
tics Conf., Auckland, New Zealand, May 2012.

G. De Marzo, A. Gabrielli, A. Zaccaria, and L. Pietronero, ‘“Dynami-
cal approach to Zipf’s law,” Phys. Rev. Res., vol. 3, no. 1, Jan. 2021,
Art. no. 013084.

1. Bolshakov and D. Filatov, ‘‘Distributions of functional and content words
differ radically,” in Proc. Mex. Int. Conf. Artif. Intell., vol. 4293, Nov. 2006,
pp. 838-843.

VOLUME 9, 2021

(36]

(37]

(38]

[39]

(40]

(41]

(42]

[43]

E. Haryu and S. Kajikawa, “Use of bound morphemes (noun particles)
in word segmentation by Japanese-learning infants,” J. Memory Lang.,
vol. 88, pp. 18-27, Jun. 2016.

D. Pinto, D. Vilari no, Y. Alemdn, H. Goémez, N. Loya, and
H. Jiménez-Salazar, “The soundex phonetic algorithm revisited for SMS
text representation,” in Text, Speech Dialogue, P. Sojka, A. Hordk,
1. Kopecek, and K. Pala, Eds. Berlin, Germany: Springer, 2012, pp. 47-55.
I. A. Ahmed, “Different types of spelling errors made by Kurdish
EFL learners and their potential causes,” Int. J. Kurdish Stud., vol. 3,
pp- 93-110, Aug. 2017.

Z.Bhatti, I. A. Ismaili, A. A. Shaikh, and W. Javaid, *“Spelling error trends
and patterns in Sindhi,” J. Emerg. Trends Comput. Inf. Sciences., vol. 3,
no. 10, pp. 1435-1439, 2012.

R. Dong, Y. Yang, and T. Jiang, ““Spelling correction of nonword errors in
uyghurchinese machine translation,” Inf., vol. 10, no. 6, pp. 202-1-202-9,
2019.

K. M. A. Hasan, M. Hozaifa, and S. Dutta, “Detection of semantic errors
from simple Bangla sentences,” in Proc. 17th Int. Conf. Comput. Inf.
Technol. (ICCIT), Dec. 2014, pp. 296-299.

D. Jurafsky and J. H. Martin, Speech and Language Processing. London,
U.K.: Pearson, 2008, ch. N-Gram Language Models.

P. Xia, L. Zhang, and F. Li, “Learning similarity with cosine similarity
ensemble,” Inf. Sci., vol. 307, pp. 39-52, Jun. 2015.

NAHID HOSSAIN received the joint bache-
lor’s degree from Frederick University, Cyprus,
and United International University (UIU),
Bangladesh, and the master’s degree from UIU.
He is currently an Assistant Professor with the
Computer Science and Engineering (CSE) Depart-
ment, UIU. Before joining UIU, he worked as
a Software Engineer with the Natural Language
Processing (NLP) Department, eGeneration Ltd.,
Bangladesh. His research interests include natural

language processing, data mining, big data, and machine learning and Al
He has got several national and international scholarships and awards,
including a scholarship from European Union and the Gold Medal from
Education Minister of Bangladesh.

SALEKUL ISLAM (Senior Member, IEEE)
received the Ph.D. degree from the Computer
Science and Software Engineering Department,
Concordia University, in June 2008, under the
supervision of Dr. J. William Atwood. He is
currently a Professor and the Head of the
CSE Department, United International University,
Bangladesh. Previously, he worked as an FQRNT
Postdoctoral Fellow at the Energie, Matériaux
et Télécommunications (EMT) Centre, Institut

National de la Recherche Scientifique (INRS), Montréal, Canada. His
research interests include future internet architecture, blockchain, edge
cloud, software-defined networks, multicast security, security protocol val-
idation, and machine learning and AI. He is serving as an Associate Editor
for IEEE Access journal.

MOHAMMAD NURUL HUDA received the
Ph.D. degree in automatic speech recognition from
Toyohashi University of Technology, Aichi, Japan,
in March 2009. He is currently a Professor and the
Director of graduate programs with the Computer
Science and Engineering Department, United
International University, Bangladesh. Moreover,
he is the Director of the Natural Language Process-
ing Department, eGeneration Ltd., Bangladesh.
His research interests include natural language

processing, machine learning, speech recognition, speech synthesis, artificial
intelligence, and computational linguistics.

141097

