
2020 IEEE Region 10 Symposium (TENSYMP), 5-7 June 2020, Dhaka, Bangladesh

Upoma: A Dynamic Online Price Comparison Tool
for Bangladeshi E-commerce Websites
Ashraful Alam, Atqiya Abida Anjum, Fahmid Shafat Tasin, Mizanur Rahman Reyad,

Sadia Afrin Sinthee, Nahid Hossain
Department of Computer Science And Engineering
United International University, Dhaka, Bangladesh

aamorroid66@gmail.com, atqiyanabila01@gmail.com, fahmidtasin@gmail.com, reyad.p220@gmail.com,
s.sadiaafrin.s@gmail.com, nahid@cse.uiu.ac.bd

Abstract—The e-commerce industry is rapidly emerging all
over the world. E-commerce sites provide the independence to
choose and buy things over the internet. However, different
websites put different prices on the exact same product, and this
leads people to spend extra money on products which could be
bought with less. Although there are several e-commerce sites
available in Bangladesh, no price comparison tool yet developed.
Thus, we have designed and developed a price comparison tool
for Bangladeshi websites named ’Upoma (Comparison)’ which
supports comparison even if the titles and prices of products are
written English, Bangla, and Transliterated Bangla. We have
fetched over 90,53,015 product details from various websites to
enrich our result based on the user’s query. In order to make
our system dynamic and to keep pace with real-time changes
occurring on the sites, our database is automatically updated
in every 12 hours. Our system displays the result with 93.06%
accuracy according to the user’s query.

Index Terms—Price Comparison, E-commerce, Web Mining,
Natural Language Processing.

I. Introduction
Nowadays, e-commerce websites have been prevalent and

growing up in an unprecedented manner. As per the report
of Statista 2019, the e-commerce market has collected 3.53
trillion US dollars [1], which is suggestive of the proliferation
of e-commerce websites around the world. As per the stats
above, it can be derived that a massive number of people
rely on buying various from e-commerce websites rather the
physical stores. E-commerce website holders are deliberately
putting prices on their websites derailed from actual rates
leveraging on people’s demand. Therefore, Consumers un-
beknownst of the actual cost of different products beforehand
are buying products by squandering money. Thus people are
being deceived, paying more money than necessary to buy a
product. Synthesizing the fact above, the importance of the
price comparison tool is beyond gainsaying. However, there
is a substantial amount of researches, browser Add-ons have
been proposed in foreign languages and freely available in
many countries including India. With that being said, two
notable price comparison tool which has been introduced in
India, namely www.mysmartprice.com and the other one is
www.compareraja.in, similar to these two Indian websites,
pricemama.com.bd does serve the purpose of a price com-
parison tool in our country. However, this website does
not provide efficient results and does not support Bangla

language searches such as our price comparison tool does.
This motivates us to develop a price comparison tool for
Bangladesh and for Bangla language. Our Solution aims for
a collaborative platform for allowing a consumer to evaluate
the price and make the purchase decision more manageable
according to their budget.
A considerable amount of congruent works but in foreign lan-
guages had been deployed earlier. However, Likening to our
proposed method, J. Nakash et al. had proposed a solution that
uses an inverted indexing technique to compare the products
found on different websites In 2015 [2]. Another work similar
to our method was published In 2019 by S. Mehak et al. They
designed a tool for price comparison which uses scrapping
scripts written with a python library and improvise the storage
for scrapped data [3]. In 2018, K.Pradeep et al. formulated
a pattern analysis recommender system by analyzing buying
patterns using data mining technique [4]. In 2016, R. shah
et al. established a website with Django framework and
MongoDB for comparing price using web crawling and also
used request and BeautifulSoup4 library for web scrapping [5].
In 2015, C. Zheng et al. established a way to use Beautiful
Soup library for retrieval of information from webpage [6] .
A. Horch et al. proposed a method of automated identification
and extraction of product price data from arbitrary e-shop
websites in this same year [7]. In 2014, Y. Ming-Hsiung et
al. came up with a method to find the lowest price and notify
the user for better satisfaction using web mining techniques
[8].
In this paper, we have proposed a robust price comparison
tool for Bangladeshi e-commerce websites and for Bangla
language. We have used the Scrapy framework to build
spiders to crawl through the websites and fetch or scrape
information posted on the site [9]. Fetched data is stored in
the CSV database. We vectorize titles and use the Cosine
Similarity algorithm to find the similarity between the search
text and dataset text [10]. We have used the Flask framework
for integration between python and website [11]. We have
designed User Interface for a user-friendly interaction while
searching for query and for showing results appertaining to
correspondent query.
This paper is organized as follows: In section 2, we describe
the proposed system and step by step explanations of our

978-1-7281-7366-5/20/$31.00 ©2020 IEEE

work and algorithm. The paper illustrates the experimental
result and performance analysis in section 3, while section 4
encompasses the paper with limitation of our system and plan
for future work.

II. PROPOSED METHOD
In this section, we have demonstrated different aspects and

the procedure of implementation of our price comparison tool.
Algorithm 1 demonstrates the pseudocode for the creation of
the database where Algorithm 2 represents the pseudocode for
the language processing and comparison methods.

Algorithm 1 Dataset creation
1: for each E-commerce site do
2: for each category in the site do
3: for each product in the category do
4: ProductDetails→Name,Price,link,Image
5: Use CSS selector to find ProductDetails
6: remove garbage data
7: CSV dataset ← ProductDetails
8: end for
9: end for
10: end for

A. Dataset Creation
Dataset is the core element of our price comparison tool.

Thus, we have used web crawling approach to collect neces-
sary data from different websites in a fast and efficient way
[12]. We have built different spiders for different websites
using Python’s powerful Scrapy framework to collect informa-
tion about products [13].After that, we store the extracted data
in an individual CSV file under the column named “Image”,
“Product name”, “Product price”, “Offer”, and “Website link”
for every website [14]. Once the crawler has completed it
traversing through the whole website, it starts to scrape off the
correspondents to a particular product discarding superfluous
information. Since websites tend to perform changes in
products after a specific time, our system has been equipped
with dynamicity to keep pace with the changes. We have
introduced an automated script that runs in every 12 hours
and renews the data in our database.

Table I: Product count in the database.
E-Commerce Websites Category Total Product
Pickaboo.com 5 1267
Othoba.com 10 31875
Bagdoom.com 36 25838
Sindabad.com 10 18031
Phoneshopbd.com 6 985
Phonesellbd.com 6 1053
Daraz.com.bd 12 8959595
Banglashoppers.com 8 1985
Jadroo.com 11 12386

These websites are selected for scraping data based on factors
such as diversity of products, popularity and trust, technical
support, and scalability. On this note, some of the lead-
ing websites have been eliminated such as chaldal.com as
Chaldal.com focuses only on grocery items. Another notable
website namely bdshop.com cannot be included as the website
only provides hardware equipment. We have also ruled out
Evaly.com and Daraz.com for being third party platforms for
selling products.
The spiders are designed in such a way if an e-commerce
website authority does remove any category, product or make
changes in any products under specific categories, spiders will
not be halted and will remain unaffected despite the changes.
The aforementioned process is repeated until all websites are
traversed, and relevant data is stored. The pseudocode of the
method is shown in Algorithm 1. We have collected over
90,53,015 data by scraping off the websites. A summary of it
is shown in Table 1.

B. Transliteration
A user can put any product name in the search bar in

both Bangla and English language. We have implemented
indic-transliteration to perform transliteration on every query.
Transliteration is a process that Romanizes every letter present
in the query. Firstly, indic-transliteration checks for the
language. If the input is in Bangla, the query is transliterated
into English and vice-versa with the concept of double meta-
phone method. [15].

C. Processing of Bag of Words & Vectorization
NLP algorithms are capable of vector-based representation

rather than the symbolic representation of words. For this
reason, we have implemented a text modeling algorithm, “Bag
of Words”. Bag of words approach preprocess the raw data
by turning all the words that exist in the database into a bag
of words, including the words presented in queries and paired
with their word count per database.
We have generated a vector representation of the database

using TF-IDF. It has been used to depict the significance of
word to its corresponding single document in digital libraries,
around 83 percent of text-based recommendation [16].

D. Algorithm for similarity checking
We have contrived an exact match function from the scratch

to extract the precise product what the user has searched for.
Exact products are presented in a descending manner. Thus,
the product with a lower price ranks first in that order. To
find the congruence between user input and the data present
in the database, we have constructed the cosine similarity
algorithm by using the Sci-kit learn library. Cosine similarity
distinguishes between two or more documents on account of
the orientation (angle), not the magnitude [17]. The similarity
between two documents is calculated by the cosine of the
angle of two vectors. Mathematically measurement of cosine
angle of the two vectors projected in multidimensional space
is considered as distance measurement of two documents.

Cosine Similarity focuses on the common words and the
occurrence frequency of common words between common
words. In addition, Cosine similarity overcomes the flaw
of zero matches between two documents irrespective of their
sizes. For instance, if a and b are two vectors then cosine
similarity uses the following rule:

cos θ = a⃗·⃗b
∥a⃗∥∥⃗b∥

=
∑n

1 aibi√∑n
1 a2

i

√∑n
1 b2i
−−−−−−−− (1)

Where , a⃗ · b⃗ =
∑n

1 aibi = a1b1 + a2b2 + · · ·+ anbn is the
dot product of the two vectors.
If the cosine value is 0, then the angle between a and b vector,
two vectors are at 90 degrees to each other and share no
similarity. Thus it can be depicted that two vectors are similar
when the cosine of the angle of two vectors is smaller.

Algorithm 2 Product search
1: InSent ← Product to be searched
2: T ← Minimal similarity threshold
3: DetectLanguage(InSent)
4: if detected language of the input is Bengali then
5: Transliterate InSent to English as TSent
6: else
7: Transliterate InSent to Bengali as TSent
8: end if
9: for each website in our data set do
10: generate bag of words with TF-IDF
11: for all products do
12: PN ← product name
13: if PN matches with InSent then
14: put product details in ExactList
15: end if
16: if PN matches with TSent then
17: put product details in ExactList
18: end if
19: if cosine similarity(PN, InSent) >=T then
20: put product details in SimilarList
21: end if
22: if cosine similarity(PN, TSent) >=T then
23: put product details in SimilarList
24: end if
25: end for
26: end for
27: Sort ExactList according to price in ascending order
28: Sort SimilarList according to similarity in descending

order and price in ascending order

On account of cosine similarity, the user can see similar
products which are corresponding to their queries. However,
there may be too many similar products on different e-
commerce websites similar to that of the user’s choice. As
the cosine similarity algorithm is performed on every bag
(multiset) of words of each website and sorts similar products

by their rate of similarity, it can create a long list with repeated
or less similar products. Which will certainly increase the
difficulty to find the right product from the prolonged list of
products. For this reason, we have introduced a variable to
control the length of the list, namely, the similarity threshold.
The similarity threshold controls how many similar products
a user wants to see in the resultant list. It is controlled with
a numbered slider bar that dictates the minimum percentage
of similarity needed for a product to be able to appear in the
result. This value can vary from 0-99 %. We have excluded
100 % match as it is done in a separate algorithm that can
detect exact Matched products. Similar results are based upon
the query of the user and displayed in an ascending manner.
The result of exact match and cosine similar match are

shown in the different tables for convenience.

E. Input Constraint Removal
Cosine Similarity and exact match function do find the exact

match or similar product contingent to the query. For instance,
if user input is in Bangla such as ''নিকয়া ৩৩১০'' transliteration
converts it into “Nokia 3310” and shows both exact and similar
result if such data is present in the database. In another case,
If the user shuffles the words of their query, it does not affect
on our system producing the result. For instance, if a user
inserts a query “3310 Nokia” instead of “Nokia 3310”, our
system will bring the correct result if the product details are
available in our database.

III. EXPERIMENTAL RESULTS AND PERFORMANCE
ANALYSIS

In this section, we have thoroughly illustrated the experi-
mental results and performance analysis. The experiment was
done Google Colab [18] and in a high-performance server
computer with 32GB RAM, 6GB Graphics Card, and Intel
Xenon Processor. Python 3.7 was the core language and
we use some libraries from Scikit-learn [19]. Our system
shows results according to the user’s query and user-defined
threshold.
According to Figure 1, the user’s query text is “F7 smart-

watch”, and the transliterated query is shown next to it. Our
system shows three products found similar to the user’s choice
with Image, regular price, offer price, and a corresponding
website link. If a user wants to buy a product of his choice,
the link given in our site will redirect to the corresponding
product page. If there is no difference between regular price
and offer price, the result comes with a “No offer” tag beside
the product. In this figure, the first table shows the exact
product which the user has searched for. The 2nd table refers
to all of the products that are similar to the user’s search. The
2nd table is displaying the results, which are 35% or higher
similar to the user search. Hereby, if a user increases the
similarity threshold, there will be less product manifestation
in the 2nd table. In the other case, If a user increments the
similarity threshold to 99%, the 2nd table will not appear
with similar products. We have tested our system by putting
automated search queries and adjusting the similarity threshold

Figure 1: Result appearance

in different values. In every search, we have found at least one
exact result matched with the query. We have considered it as
an error if the exact product does not appear on the result page
despite the availability of that product in the database. After
performing 1500 queries, we have observed that our system
shows the result with 93.06% of reasonably good accuracy.

IV. CONCLUSION AND FUTURE WORK

The paper illustrated a comprehensive price comparison
tool based on Bangladesh’s perspective. We have suggested
the lowest price for the same product based on the simi-
larity between the user’s query and products stored in the
database. We have built a first-ever price comparison tool
that can process queries in Bangla language. Although we
have reached our goal, the system is not beyond limitation.
We have used generic indic-transliteration to process data in
Bangla. As there is less English alphabet than the Bangla
alphabet, indic-transliteration sometimes fails to Romanize the
whole query properly. For this reason, our next strategy is to
develop a transliteration algorithm to conform to our system.
In the future, we are planning to arrange a manifestation of
consumer reviews and ratings to help consumers to identify
the right product to cover their needs according to their budget.
Moreover, we will use Neural Networks to generate different
predictions and suggestions based on the user’s query.

References

[1] Esther Shaulova and Lodovica Biagi. ecommerce report 2019.
[2] Jawahire Nakash, Shaikh Anas, Siddiqi Muzammil Ahmad,

Ansari Mohd. Azam, and Tabrez Khan. Real time product analysis
using data mining. International Journal of Advanced Research in
Computer Engineering Technology, Mar 2015.

[3] Shakra Mehak, Rabia Zafar, Sharaz Aslam, and Sohail Masood Bhatti.
Exploiting filtering approach with web scrapping for smart online
shopping penny wise a wise tool for online shopping. In 2019 2nd
International Conference on Computing, Mathematics and Engineering
Technologies (iCoMET), pages 1–5. IEEE, 2019.

[4] Kali Pradeep, I Bhagyasri, and P Praneetha. E-commerce with backbone
of data mining. International Journal of Engineering and Technical
Research, 2:460, 10 2018.

[5] Riya Shah, Karishma Pathan, Anand Masurkar, and Shweta Rewatkar.
Comparison of e-commerce products using web mining.

[6] Chunmei Zheng, Guomei He, and Zuojie Peng. A study of web
information extraction technology based on beautiful soup. JCP,
10(6):381–387, 2015.

[7] Andrea Horch, Holger Kett, and Anette Weisbecker. Mining e-commerce
data from e-shop websites. In 2015 IEEE Trustcom/BigDataSE/ISPA,
volume 2, pages 153–160. IEEE, 2015.

[8] Ying Ming-Hsiung and Hsu Yeh-Yen. A commodity search system for
online shopping based on ontology and web mining. In IET Conference
Proceedings. The Institution of Engineering & Technology, 2014.

[9] Ahmad Tasnim Siddiqui and Sultan Aljahdali. Web mining techniques
in e-commerce applications. arXiv preprint arXiv:1311.7388, 2013.

[10] Dwijen Rudrapal, Amitava Das, and Baby Bhattacharya. Measuring
semantic similarity for bengali tweets using wordnet. In Proceedings
of the International Conference Recent Advances in Natural Language
Processing, pages 537–544, 2015.

[11] Fankar Armash Aslam, Hawa Nabeel Mohammed, Jummal Musab
Mohd, Murade Aaraf Gulamgaus, and PS Lok. Efficient way of web
development using python and flask. International Journal of Advanced
Research in Computer Science, 6(2), 2015.

[12] Eloisa Vargiu and Mirko Urru. Exploiting web scraping in a collabora-
tive filtering-based approach to web advertising. Artif. Intell. Research,
2(1):44–54, 2013.

[13] Amna Shifia Nisafani, Rully Agus Hendrawan, and Arif Wibisono.
Eliciting data from website using scrapy: An example. SEMNASTE-
KNOMEDIA ONLINE, 5(1):2–1, 2017.

[14] Joydeep Bhattacharjee. Working with data. In Practical Machine
Learning with Rust, pages 141–186. Springer, 2020.

[15] N. UzZaman and M. Khan. A double metaphone encoding for bangla
and its application in spelling checker. In 2005 International Conference
on Natural Language Processing and Knowledge Engineering, pages
705–710, Oct 2005.

[16] Joeran Beel, Stefan Langer, Marcel Genzmehr, Bela Gipp, Corinna
Breitinger, and Andreas Nürnberger. Research paper recommender
system evaluation: a quantitative literature survey. In Proceedings
of the International Workshop on Reproducibility and Replication in
Recommender Systems Evaluation, pages 15–22, 2013.

[17] Jun Ye. Cosine similarity measures for intuitionistic fuzzy sets and
their applications. Mathematical and computer modelling, 53(1-2):91–
97, 2011.

[18] Tiago Pessoa, Raul Medeiros, Thiago Nepomuceno, Gui-Bin Bian,
V.H.C. Albuquerque, and Pedro Pedrosa Filho. Performance analysis of
google colaboratory as a tool for accelerating deep learning applications.
IEEE Access, PP:1–1, 10 2018.

[19] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pret-
tenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Ma-
chine learning in python. Journal of machine learning research,
12(Oct):2825–2830, 2011.

